

NTN精密樹脂

〈ベアリー商品〉

公司名称:昆山易可达五金机电设备有限公司地址:昆山市柏庐南路1076号

咨询电话:0512-55260114 联 系 人:王先生 传真号码: 0512-57914138 电子邮箱: ubc-sz@189.cn

在线咨询: QQ: 1295661988

CAT. No. 5100-WI/J

トライボロジーをキーテクノロジーに、 先進のニーズに独自技術と品質で応える 「NTNベアリー商品」

NTNベアリー商品は、NTN精密樹脂株式会社があらゆる産業分野での経験を生かし、優れた品質と多くの特長をもった樹脂製すべり軸受です。

お客様のニーズに合わせた材料開発から製品設計・製造まで一貫した生産体制により、安定した品質の確保や、ユニット商品の設計にも取り組んでいます。

また、環境へ配慮した材料や、軽量、長寿命、高機能化など、環境ニーズの向上をサポートし、未来に向けて人にも地球にもやさしい商品の技術開発を積極的に取り組んでいます。

目 次

NTNベアリー(すべり軸受)

すべり軸受の設計

NTN精密樹脂すべり軸受標準品

NTN精密樹脂材料

用途別材料/使用別材料

応用例

1.1 樹脂軸受の位置づけ ····································		5
2. 1 樹脂軸受の設計手順 2. 2 軸受材料の選定(PV値) 2. 3 摩耗の推定 2. 4 はめあいとすきま 2. 5 取り扱い	6 6 7	6~ 9
3. 1 すべり軸受標準品シリーズ ARE形, AR形, ARF形寸法表 BRF形, TW形寸法表 MLE形寸法表 MLEF形, MLEW形寸法表 ML形寸法表 Sニアチュア樹脂すべりねじ	11 シート材21 12 ロッド材22 13 パイプ材23 15	10~23
4.1 ベアリー材料のベースレジンと特性	4.5 化学的特性35 25 4.6 特性値の試験方法36 26 27 29	24~36
5. 1 摺動用シール材料 5. 2 樹脂歯車材料 5. 3 食品機械用摺動材料 5. 4 工作機械専用摺動材料 5. 5 ふっ素ゴム系すべるゴム 5. 6 樹脂転がり軸受	38 5. 8 MLEベアリング ····································	37~47
6. 1 自動車分野 6. 2 複写機・LBP分野 6. 3 産業機械分野	49	48~50

巻末(51ページ)使用条件確認票を掲載しています。ご利用ください。

】 NTNベアリー(すべり軸受)

1.1 樹脂軸受の位置づけ

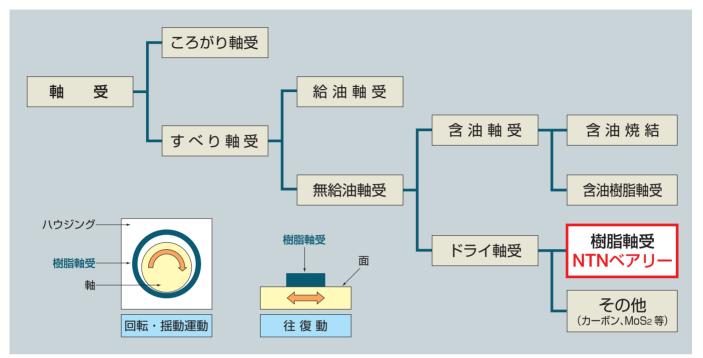


図1 樹脂軸受の位置づけ

1.2 樹脂すべり軸受ところがり軸受の比較

表1 樹脂すべり軸受ところがり軸受の比較

樹脂軸受のメリット	軽量化コンパクト設計安価射出成形による設計の自由度水中など特殊環境で使用可能
樹脂軸受のデメリット	●耐荷重性●温度に対して寸法変化が大きい

2.1 樹脂軸受の設計手順

NTNでは下記手順に沿って樹脂軸受の設計を行なっています。

図2 樹脂軸受の設計手順

2.2 軸受材料の選定 (PV値)

NTN精密樹脂すべり軸受の設計には、使用温度・荷重・すべり速度・相手材材質・トルク・精度・環境・運動形態・期待寿命等の諸条件を明確に把握しておく必要があります。

軸受材の選定にあたっては、軸受材の許容面圧や許容 すべり速度を考慮するとともに、使用温度、相手材材質、 潤滑条件等の検討が必要です。

PV値は、面圧Pとすべり速度Vの積として表わされ軸受材の使用可能な運転許容範囲を判定するためによく利用されます。ただし面圧及びすべり速度にも各許容値がありますので、使用可能な範囲は図3のようになります。

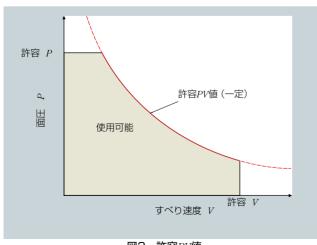
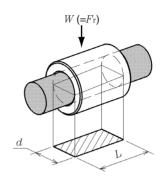


図3 許容PV値

 $PV \le$ 許容PV値, $P \le$ 許容面圧 P, $V \le$ 許容すべり速度 V


面圧Pは摺動面に作用する単位面積当たりの荷重を示します。ラジアル荷重の場合の面圧は

 $P = W/d \cdot L$

P : 面圧 MPa

W (=Fr): 軸受にかかる荷重 N

d : 軸径 mm L : 軸受幅 mm

すべり速度Vの計算式は

 $V = \pi \cdot d \cdot n X 10^{-3}$

V :すべり速度 m/min

d: 軸径mmn: 軸回転数rpm

2.3 摩耗の推定

すべり軸受の寿命は、軸受が使用に耐えなくなるまで のすべり面の摩耗によって決まります。

すべり軸受の摩耗量は、すべり速度、面圧、運転状態、 潤滑条件、相手材の表面粗さ、雰囲気温度など運転条件 によって異なります。一般に摩耗量の目安は、次の式に よって求めます。

 $R = K \cdot P \cdot V \cdot T$

ここに

R :摩耗量 mm

K : 比摩耗量 mm³/N⋅m

P:面圧 MPa

V:すべり速度 m/min

T :時間 min

すべり軸受の摩耗は、相手材の表面粗さが影響しますので、0.1~0.8Ra程度を推奨します。

なお、軸の硬度は高いほど摩耗量を小さく抑えることが

でき、HRC22以上を推奨します。

〈計算例〉

ベアリーFL3000製AR形スリーブベアリングでの計算例を次ページに示します。

<摩耗量計算例>

ベアリーFL3000製AR形スリーブベアリングR-AR1515を、次の仕様で使用したときの摩耗量を求める。

〈什 様〉

軸 径 d : 15mm 軸受幅 L : 15mm 軸受荷重 $F_{\rm r}$: 300N 軸回転数 n : 300rpm 使用温度 : 室温

使用時間 T : 1000時間

潤 滑 : なし

面圧 $P(MPa) = F_r/(d \cdot L) = 300/(15X15) = 1.33MPa$ すべり速度 $V(m/min) = \pi dn = 3.14X15X300/1000$

≒14.1m/min

室温における比摩耗量をカタログ33ページから

 $K = 10 \times 10^{-8} \text{mm}^3 / \text{N} \cdot \text{m}$

PV=1.33X14.1 = 18.8MPa · m/min

T=1 000h=60 000min

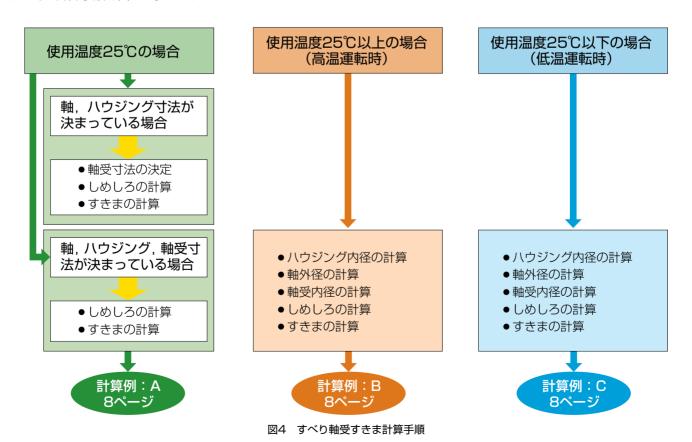
摩耗量は $R = K \cdot P \cdot V \cdot T$ から

 $R = 10 \times 10^{-8} \times 18.8 \times 60~000 = 0.113$

1 000時間後の摩耗量は0.113mmとなります。

2.4 はめあいとすきま

すべり軸受は、通常ハウジングに圧入して使用します。 軸受の運転すきまは、軸径によって異なりますが、適正 なすきまが必要です。また使用温度の変化が大きい場合 は、温度上昇により軸受が膨張し、すきまが小さくなる ので、取付すきまをこの量だけ大きくしておく必要があ ります。


すきまを小さくして精度をあげる場合は、軸受をハウジングに取り付けた後に旋削やリーマなどで内径を加工することができます。

すべり軸受標準品については軸受寸法表に軸及びハウジングの推奨寸法と、はめあい後の取付すきまが記載してありますが、アルミ合金、樹脂などの軟質材ハウジングや薄肉ハウジングのときは寸法表に記載の取付すきまより大きくなります。なお、低温で使用する場合、圧入しまりばめが緩くなることがあるので、ノックピン又は、キーを用いて回り止めを行うか、接着剤を用いて軸受を固定します。

2.5 ベアリーすべり軸受すきま計算手順

●軸受すきまの計算

軸受すきまの計算は、使用温度「25℃の場合」「25℃以上の場合」「25℃未満の場合」とそれぞれ計算手順が異なります。その計算手順を図4に示します。

〈設計計算-A〉

1. 基準温度(25℃)のすきま計算

1) しめしろ

最大: $F_H = D_H - H_L$ 最小: $F_L = D_L - H_H$

2) しめしろによる軸受内径収縮量

最大: $E_{\text{max}} = \lambda \cdot F_{\text{H}} \ (\lambda = 1.0)$ 最小: $E_{\text{min}} = \lambda \cdot F_{\text{L}} \ (\lambda = 1.0)$

3) 25℃取付け時の軸受内径寸法

最大: $d_{25H} = d_H - E_{min}$ 最小: $d_{25L} = d_L - E_{max}$

4) 25℃取付け時の運転すきま

最大: $C_{\text{max}} = d_{25\text{H}} - S_{\text{L}}$ 最小: $C_{\text{min}} = d_{25\text{L}} - S_{\text{H}}$

 $S_{\rm H}$: 軸の外径最大寸法 $S_{\rm L}$: 軸の外径最小寸法

HH: ハウジングの内径最大寸法

 $H_{
m L}$: ハウジングの内径最小寸法 $d_{
m H}$: 軸受内径最大寸法

 $d_{\rm L}$:軸受内径最小寸法 $D_{\rm H}$:軸受外径最大寸法 $D_{\rm L}$:軸受外径最小寸法

備考1. 一般にすべり軸受の最小すきまはドライで用いる場合,発熱の影響を少なくするため軸受呼び径の2/1000~7/1000程度を設定します。

2. しめしろによる収縮率は、通常100%とする。

ベアリーFL3000製AR形スリーブベアリングR-ARE1010のすきまの計算を行う。

軸,ハウジング寸法は,カタログの推奨値とする。軸寸法:10h6($^{0.009}_{0.009}$)より $S_{\rm H}$ =10, $S_{\rm L}$ =9.991 ハウジング寸法:14M7($^{0.018}_{0.018}$)より $H_{\rm H}$ =14, $H_{\rm L}$ =13.982軸受内径寸法:10($^{+0.24}_{+0.19}$)より $d_{\rm H}$ =10.24, $d_{\rm L}$ =10.19軸受外径寸法:14($^{+0.10}_{+0.05}$)より $D_{\rm H}$ =14.10, $D_{\rm L}$ =14.05最大しろしめ: $F_{\rm H}$ = $D_{\rm H}$ - $H_{\rm L}$ =14.10-13.982=0.118最小しめしろ: $F_{\rm L}$ = $D_{\rm L}$ - $H_{\rm H}$ =14.05-14.00=0.05軸受内径への収縮量: $E_{\rm max}$ = $\lambda\cdot F_{\rm H}$ =1X0.118=0.118 $E_{\rm min}$ = $\lambda\cdot F_{\rm L}$ =1X0.05=0.05

25℃取付時の軸受内径寸法:

 $d_{25H} = d_H - E_{min} = 10.24 - 0.05 = 10.19$ $d_{25L} = d_L - E_{max} = 10.19 - 0.118 = 10.072$

25℃取付時の運転すきま:

 $C_{\text{max}} = d_{25\text{H}} - S_{\text{L}} = 10.19 - 9.991 = 0.199 \ \ = 0.20$ $C_{\text{min}} = d_{25\text{L}} - S_{\text{H}} = 10.072 - 10 = 0.072 \ \ = 0.07$

〈設計計算-B〉

2. 高温運転時 $(T_{\mathsf{H}}^{\circ}\mathbb{C})$ のすきま計算

1) ハウジング内径寸法

最大: $HH_H = H_H \{1 + \alpha_1 (T_H - 25)\}$ 最小: $HH_L = H_L \{1 + \alpha_1 (T_H - 25)\}$

2) 軸外径寸法

最大: $SH_{\rm H} = S_{\rm H} \{1 + \alpha_2 (T_{\rm H}-25)\}$ 最小: $SH_{\rm L} = S_{\rm L} \{1 + \alpha_2 (T_{\rm H}-25)\}$

3) 運転すきま

最大:

 $CH_{\text{max}} = \sqrt{(H_{\text{H}})^2 \{1 + \alpha_1 (T_{\text{H}} - 25)\}^2 - \{(H_{\text{H}})^2 - (d_{25\text{H}})^2\} \{1 + \alpha_3 (T_{\text{H}} - 25)\}^2}$ $-S_{\text{L}} \{1 + \alpha_2 (T_{\text{H}} - 25)\}$

最小:

 $CH_{\text{min}} = \sqrt{(H_{\text{L}})^2 \{1 + \alpha_1 (T_{\text{H}} - 25)\}^2 - \{(H_{\text{L}})^2 - (d_{25\text{L}})^2\} \{1 + \alpha_3 (T_{\text{H}} - 25)\}^2}$ $-S_{\text{H}} \{1 + \alpha_2 (T_{\text{H}} - 25)\}$

ここで

 $\alpha_1: T_{\mathbb{H}}$ C におけるハウジング材の線膨張係数

 $\alpha_2: T_{\rm H}$ \mathbb{C} における軸材の線膨張係数 $\alpha_3: T_{\rm H}$ \mathbb{C} における軸受材の線膨張係数

〈設計計算-C〉

3. 低温運転時 (T∟℃) のすきま計算

1) ハウジング内径寸法

最大: $HL_H = H_H \{1 + \alpha_{11} (T_L - 25)\}$ 最小: $HL_L = H_L \{1 + \alpha_{11} (T_L - 25)\}$

2) 軸外径寸法

最大: $SL_H = S_H \{1 + \alpha_{22}(T_L - 25)\}$ 最小: $SL_L = S_L \{1 + \alpha_{22}(T_L - 25)\}$

3) 運転すきま

最大:

 $CL_{\text{max}} = \sqrt{(H_{\text{H}})^2 \{1 + \alpha_{11} (T_{\text{L}} - 25)\}^2 - \{(H_{\text{H}})^2 - (d_{25\text{H}})^2\} \{1 + \alpha_{33} (T_{\text{H}} - 25)\}^2}$ $-S_{\text{L}} \{1 + \alpha_{22} (T_{\text{L}} - 25)\}$

最小:

 $CL_{\text{min}} = \sqrt{(H_{\text{L}})^2 \{1 + \alpha_{11} (T_{\text{L}} - 25)\}^2 - \{(H_{\text{L}})^2 - (d_{25\text{L}})^2\} \{1 + \alpha_{33} (T_{\text{L}} - 25)\}^2} - S_{\text{H}} \{1 + \alpha_{22} (T_{\text{L}} - 25)\}$

ここで

 $\alpha_{11}: T_{\rm L}$ C におけるハウジング材の線膨張係数

lpha22: $T_{
m L}$ $^{\circ}$ Cにおける軸材の線膨張係数 $^{\circ}$ $^{\circ}$ 33: $T_{
m L}$ $^{\circ}$ Cにおける軸受材の線膨張係数

*参考 相手材の線膨張係数 (×10⁻⁵/℃)

个多为	作士的の物	の形式に対して	10 /0)
	相手	材	α_1, α_2
	軟	鋼	1.1
	アルミニュ	ム	2.3
	ステンレス	ス鋼	1.73

2.6 取り扱い

(a) 取付け方法

ハウジングへの圧入は、軸受を直接ハンマなどで打ち 込まないでください。

圧入には、**図5**のような圧入棒を用い、ハウジングの入口に十分大きい案内面を設けて、軸受とハウジング内径を心合せした状態で、プレスを用いて圧入してください。

なお、低温で使用する場合は、圧入しまりばめが緩む ことがあるので、ノックピン又はキーを用いて回り止め を行うか、接着剤を用いて軸受を固定してください。

備考) 大型樹脂軸受の圧入は、軸受を冷やすことにより 容易に取り付けることができます。

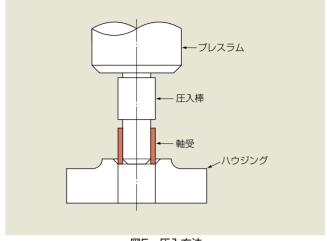


図5 圧入方法

(b) 使用上の注意事項

- (1) 軸受に衝撃などがかかった場合、ベアリーFLは変形し傷がつくことがあります。またベアリーPI、PK、ASは、欠ける恐れがあるのでご注意ください。
- (2) 相手材の表面粗さ及び硬度は、寿命に大きく影響するので表面粗さは $0.1\sim0.8$ Ra、及び硬度はHRC22以上を推奨します。
- (3) すべり軸受を接着して使用する場合には、表面に接着可能化処理が必要です。この場合には、「接着可能化処理必要」とご指定ください。
- (4) すべり軸受の接着には、エポキシ系接着剤が好ましいです。
- (5) 使用される雰囲気、温度により軸とのすきまがなくなり発熱、焼付、作動停止に至る場合があります。 で使用前に、はめあいとすきまの関係を十分で検討ください。
- (6) グリース又は潤滑油の使用環境では、これらが介在することにより、材質、使用条件で相性がありますので、ご照会ください。

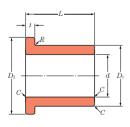
(C) 保管上の注意

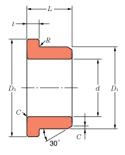
屋内で、熱・発火源から離れた場所に保管する。

酸化剤、強酸化性の酸、及びアルカリの近くには保管しない。

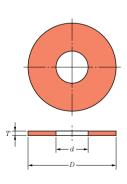
3. 1 NTNすべり軸受標準品シリーズ

表2 標準品一覧


材料名称	外観形状	特 長
ARE, AR [スリーブベアリング]		AREは、ベアリーFL3000をオートモールド工法により環境ゼロエミッションを達成した商品です。ARと性能は同等で、内径は3mm~12mmを標準化しています。 ARは、ベアリーFL3000のロッド材またはパイプ材から加工した商品です。この軸受はラジアル荷重のみ受けられ、内径は15mm~50mmを標準化しています。
ARF [フランジ付き スリーブベアリング]	, s. S.	ARFは,ARのフランジ付きでアキシアル荷重も受けられ,内径は 3mm〜50mmを標準化しています。
BRF [フランジ付き スリーブベアリング]		BRFは、ベアリーAS5005の材料を射出成形した商品です。 この軸受はラジアル荷重とアキシアル荷重が受けられるフランジ付き です。 ARFよりも軽量でコンパクトに設計できます。 内径は3mm~25mmを標準化しています。
TW [スラストワッシャ]	٥٥٥٥	TWは,ベアリーFL3000のシートから加工したスラストワッシャで,厚みは0.8mm,内径は6mm~50mmを標準化しています。
MLE [MLEベアリング] MLEF [フランジ付き MLEベアリング] MLEW [MLEスラストワッシャ]		MLEは、バックメタルの鋼板に青銅粉末を焼結した多孔質焼結層にベアリーFL7023(特殊充填剤入り四ふっ化エチレン樹脂)を含浸させた三層構造の鉛フリー軸受です。ラジアル荷重用軸受MLE、ラジアル荷重とアキシアル荷重が受けられるフランジ付きMLEF、スラスト荷重用軸受MLEWを標準化しています。
ML [Mライナベアリング]		MLは、鋼板の内面にベアリーFL3060のシートを接着した巻きブッシュで、鋼板の表面は防錆のため亜鉛メッキを施しています。この軸受は、AR、ARFよりも高面圧に耐え、寸法も薄肉のため、コンパクトに設計できます。 内径は3mm~70mmがあり、おのおのの内径寸法に対して、数種類の幅寸法を標準化しています。
MSS [ミニアチュア樹脂すべりねじ]		MSSは、ベアリーAS5000製のナットとステンレス(SUS304)製 転造ねじ軸との組合せにより幅広い環境で使用できる、低騒音すべり ねじです。 摘要サイズ ねじ軸呼び径:4mm~12mm 呼びリード:1mm、2mm ねじ軸呼び径に対して1.5倍、3倍

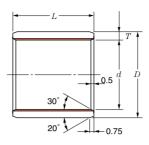

T- "T			寸	-	法					付法	- N- /N	取付け
呼び番号	d 計	容差	D ∰	中容差	L #	容差	C		軸 h6		ッジング M7	最 小 すきま
R-ARE0305	3	+0.21 +0.16	6	+0.09 +0.04	5	0 -0.20	0.3	3	0 -0.006	6	0 -0 012	0.06
R-ARE0406	4	+0.21 +0.16	7	+0.09 +0.04	6	0 -0.20	0.3	4	0 -0.006	7	0 -0.015	0.06
R-ARE0506	5	+0.21 +0.16	8	+0.09 +0.04	6	0 -0.20	0.3	5	0 -0.008	8	0 -0.015	0.06
R-ARE0608	6	+0.21 +0.16	9	+0.09 +0.04	8	0 -0.20	0.3	6	0 -0.008	9	0 -0.015	0.06
R-ARE0708	7	+0.23 +0.18	11	+0.10 +0.05	8	0 -0.20	0.5	7	0 -0.009	11	0 -0.018	0.06
R-ARE0808	8	+0.23 +0.18	12	+0.10 +0.05	8	0 -0.20	0.5	8	0 -0.009	12	0 -0.018	0.06
R-ARE0910	9	+0.23 +0.18	13	+0.10 +0.05	10	0 -0.25	0.5	9	0 -0.009	13	0. -0.018	0.06
R-ARE1010	10	+0.24 +0.19	14	+0.10 +0.05	10	0 -0.25	0.5	10	0 -0.009	14	0 -0.018	0.07
R-ARE1210	12	+0.24 +0.19	16	+0.10 +0.05	10	0 -0.25	0.5	12	0 -0.011	16	0 -0.018	0.07
R-AR1515	15	+0.27 +0.20	21	+0.10 +0.05	15	0 -0.25	0.5	15	0 -0.011	21	0 -0.021	0.08
R-AR1715	17	+0.27 +0.20	23	+0.10 +0.05	15	0 -0.25	0.5	17	0 -0.011	23	0 -0.021	0.08
R-AR1815	18	+0.27 +0.20	24	+0.10 +0.05	15	0 -0.25	0.5	18	0 -0.011	24	0 -0.021	0.08
R-AR2020	20	+0.33 +0.21	26	+0.11 +0.06	20	0 -0.25	0.8	20	0 -0.013	26	0 -0.021	0.08
R-AR2220	22	+0.33 +0.21	28	+0.11 +0.06	20	0 -0.25	0.8	22	0 -0.013	28	0 -0.021	0.08
R-AR2525	25	+0.33 +0.21	31	+0.11 +0.06	25	0 -0.25	0.8	25	0 -0.013	31	0 -0.025	0.08
R-AR2830	28	+0.33 +0.21	34	+0.11 +0.06	30	0 -0.25	0.8	28	0 -0.013	34	0 -0.025	0.08
R-AR3030	30	+0.33 +0.21	36	+0.11 +0.06	30	0 -0.25	0.8	30	0 -0.013	36	0 -0.025	0.08
R-AR3230	32	+0.38 +0.22	40	+0.11 +0.06	30	0 -0.25	1.0	32	0 -0.016	40	0 -0.025	0.09
R-AR3535	35	+0.38 +0.22	43	+0.11 +0.06	35	0 -0.25	1.0	35	0 -0.016	43	0 -0.025	0.09
R-AR4040	40	+0.38 +0.22	48	+0.11 +0.06	40	0 -0.25	1.0	40	0 -0.016	48	0 -0.025	0.09
R-AR4550	45	+0.39 +0.23	53	+0.11 +0.06	50	0 -0.25	1.0	45	0 -0.016	53	0 -0.030	0.09
R-AR5050	50	+0.39 +0.23	60	+0.11 +0.06	50	0 -0.25	1.0	50	0 -0.016	60	0 -0.030	0.09

- 備考1.取付け最小すきまはM7超硬製ハウジングに取付け時の値です。
 2.80°C以上でご使用の場合は,運転すきまに問題がでる場合がありますので**NTN**にご照会ください。

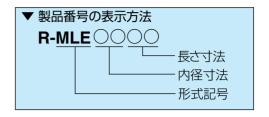

											-	寸法測定	温度2	25℃/≌	単位 mm
PT = W PT				Z	t	法						推奨寸法			
呼び番号	d a	午容差	D ₁ 許容差		上韵	容差	D_2	t 許	容差	C		軸 16		ジング Mフ	最小すきま
R-ARF0305	3	- +0.10		+0.09 +0.04	5	0 -0.20	9	1.5	+0.10 0	0.3	3	0 -0.006	6	0 -0.012	0.06
R-ARF0406	4	+0.21 +0.16	7	+0.09 +0.04	6	0 -0.20	9	1.5	+0.10 0	0.3	4	0 -0.006	7	0 -0.015	0.06
R-ARF0508	5	+0.21 +0.16	8	+0.09 +0.04	8	0 -0.20	11	1.5	+0.10 0	0.3	5	0 -0.008	8	0 -0.015	0.06
R-ARF0608	6	+0.21 +0.16	9	+0.09 +0.04	8	0 -0.20	12	1.5	+0.10 0	0.3	6	0 -0.008	9	0 -0.015	0.06
R-ARF0710	7	+0.23 +0.18	11	+0.10 +0.05	10	0 -0.25	15	2	+0.10 0	0.5	7	0 -0.009	11	0 -0.018	0.06
R-ARF0810	8	+0.23 +0.18	12	+0.10 +0.05	10	0 -0.25	16	2	+0.10 0	0.5	8	0 -0.009	12	0 -0.018	0.06
R-ARF0910	9	+0.23 +0.18	13	+0.10 +0.05	10	0 -0.25	17	2	+0.10 0	0.5	9	0 -0.009	13	0 -0.018	0.06
R-ARF1015	10	+0.24 +0.19	14	+0.10 +0.05	15	0 -0.25	18	2	+0.10 0	0.5	10	0 -0.009	14	0 -0.018	0.07
R-ARF1215	12	+0.24 +0.19	16	+0.10 +0.05	15	0 -0.25	20	2	+0.10 0	0.5	12	0 -0.011	16	0 -0.018	0.07
R-ARF1520	15	+0.27 +0.20	21	+0.10 +0.05	20	0 -0.25	27	3	+0.10 0	0.5	15	0 -0.011	21	0 -0.021	0.08
R-ARF1720	17	+0.27 +0.20	23	+0.10 +0.05	20	0 -0.25	29	3	+0.10 0	0.5	17	0 -0.011	23	0 -0.021	0.08
R-ARF1820	18	+0.27 +0.20	24	+0.10 +0.05	20	0 -0.25	30	3	+0.10 0	0.5	18	0 -0.011	24	0 -0.021	0.08
R-ARF2025	20	+0.33 +0.21	26	+0.11 +0.06	25	0 -0.25	32	3	+0.10 0	0.8	20	0 -0.013	26	0 -0.021	0.08
R-ARF2225	22	+0.33 +0.21	28	+0.11 +0.06	25	0 -0.25	34	3	+0.10 0	0.8	22	0 -0.013	28	0 -0.021	0.08
R-ARF2530	25	+0.33 +0.21	31	+0.11 +0.06	30	0 -0.25	37	3	+0.10 0	0.8	25	0 -0.013	31	0 -0.025	0.08
R-ARF2830	28	+0.33 +0.21	34	+0.11 +0.06	30	0 -0.25	40	3	+0.10 -0.05	0.8	28	0 -0.013	34	0 -0.025	0.08
R-ARF3035	30	+0.33 +0.21	36	+0.11 +0.06	35	0 -0.25	42	3	+0.10 -0.05	0.8	30	0 -0.013	36	0 -0.025	0.08
R-ARF3235	32	+0.38 +0.22	40	+0.11 +0.06	35	0 -0.25	48	4	+0.10 -0.05	1.0	32	0 -0.016	40	0 -0.025	0.09
R-ARF3540	35	+0.38 +0.22	43	+0.11 +0.06	40	0 -0.25	51	4	+0.10 -0.05	1.0	35	0 -0.016	43	0 -0.025	0.09
R-ARF4045	40	+0.38 +0.22	48	+0.11 +0.06	45	0 -0.25	56	4	+0.10 -0.05	1.0	40	0 -0.016	48	0 -0.025	0.09
R-ARF4550	45	+0.39 +0.23	53	+0.11 +0.06	50	0 -0.25	61	4	+0.10 -0.05	1.0	45	0 -0.016	53	0 -0.030	0.09
R-ARF5060	50	+0.39 +0.23	60	+0.11 +0.06	60	0 -0.25	70	5	+0.10 -0.05	1.0	50	0 -0.016	60	0 -0.030	0.09

- 備考1. フランジ部内側,隅RはO.2mm以下。 2. 取付け最小すきまはM7超硬製ハウジングに取付け時の値です。 3. 80°C以上でご使用の場合は,運転すきまに問題がでる場合がありますのでNTNにご照会ください。

呼び番号	d 許容差		D_1	寸 許容差	法 l 許容差		D_2	t 許容差			推奨 軸 hフ		'ジング H7	取付け 最 小 すきま
R-BRF0304	3	+0.21 +0.16	6	+0.11 +0.06	4	±0.2	9	1.5	±0.1	3	0 -0.010	6	+0.012	0.05
R-BRF0404	4	+0.22 +0.17	7	+0.12 +0.06	4	±0.2	10	1.5	±0.1	4	0 -0.012	7	+0.015 0	0.05
R-BRF0505	5	+0.22 +0.17	8	+0.12 +0.06	5	±0.2	11	1.5	±0.1	5	0 -0.012	8	+0.015 0	0.05
R-BRF0605	6	+0.22 +0.17	9	+0.12 +0.06	5	±0.2	12	1.5	±0.1	6	0 -0.012	9	+0.015	0.05
R-BRF0806	8	+0.26 +0.20	12	+0.14 +0.07	6	±0.2	15	2	±0.1	8	0 -0.015	12	+0.018	0.06
R-BRF1008	10	+0.27 +0.21	14	+0.14 +0.07	8	±0.2	17	2	±0.1	10	0 -0.015	14	+0.018	0.07
R-BRF1208	12	+0.28 +0.21	16	+0.14 +0.07	8	±0.2	19	2	±0.1	12	0 -0.018	16	+0.018	0.07
R-BRF1510	15	+0.30 +0.23	21	+0.15 +0.07	10	±0.2	24	3	±0.1	15	0 -0.018	21	+0.021	0.08
R-BRF2012	20	+0.31 +0.23	26	+0.15 +0.07	12	±0.2	29	3	±0.1	20	0 -0.021	26	+0.021	0.08
R-BRF2515	25	+0.32 +0.24	31	+0.16 +0.08	15	±0.2	34	3	±0.1	25	0 -0.021	31	+0.025 0	0.08



		リル別に加及し	70/ 丰屋 111111
		寸 法	
呼び番号	d		T
	+0.25	0 -0.25	±0.06
R-TW0613	6.2	12.8	0.8
R-TW0715	7.2	14.8	0.8
R-TW0815	8.2	14.8	0.8
R-TW0920	9.2	19.8	0.8
R-TW1020	10.2	19.8	0.8
R-TW1225	12.2	24.7	0.8
R-TW1530	15.3	29.7	0.8
R-TW1735	17.3	34.6	0.8
R-TW1835	18.3	34.6	0.8
R-TW2040	20.4	39.6	0.8
R-TW2245	22.4	44.5	0.8
R-TW2550	25.4	49.5	0.8
R-TW2855	28.4	54.4	0.8
R-TW3060	30.4	59.4	0.8
R-TW3260	32.4	59.4	0.8
R-TW3565	35.6	64.3	0.8
R-TW4070	40.6	69.3	0.8
R-TW4575	45.6	74.2	0.8
R-TW5080	50.8	79.2	0.8

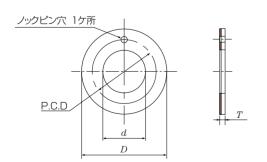



※注) 外径10mm以下または長さ7mm以下のブッシュの面取寸法は 図示と違い、バリ除去程度の面取を行っています。

							NT 7 %	4 -					
内径	外径					=	呼び		`				
d	D	3	4	5	6	7	さ <i>L</i> 8	(許容差 <u>.</u>) 10	12	15	20	25	30
3	5	J	4	MLE0305	MLE0306	,	U	10	12	10	20	20	30
4	6		MLE0404		MLE0406		MLE0408						
5	7		MLE0504	MLE0505	MLE0506		MLE0508						
6	8			MLE0605	MLE0606	MLE0607	MLE0608	MLE0610					
7	9			MLE0705	III LLUGGO	MLE0707	III.EE0000	MLE0710	MLE0712				
8	10			MLE0805	MLE0806	MLE0807	MLE0808	MLE0810	MLE0812				
9	11			WILLOODS	WILLOOD	MLE0907	WILLOOD	MLE0910	WILLOUIZ				
10	12				MLE1006	MLE1007	MLE1008	MLE1010	MLE1012	MLE1015	MLE1020		
12	14				MLE1206	WILLIOU	MLE1208	MLE1210	MLE1212	MLE1215	MLE1220		
13	15				WILLIZOO		MLE1308	MLE1310	MLE1315	WILLIZIO	WILLIZZO		
14	16						WILLIOUS	MLE1410	MLE1412	MLE1415	MLE1420		
15	17						MLE1508	MLE1510	MLE1512	MLE1515	MLE1520	MLE1525	
16							WILLISOO		MLE1612				
17	18							MLE1610	WILEIGIZ	MLE1615 MLE1715	MLE1620 MLE1720	MLE1625	
18	20							MLE1810	MLE1812	MLE1715	MLE1720	MLE1825	
									WILETOIZ		WILE 102U	WILE 1025	
19	22							MLE1910	MI 50040	MLE1915	MI 50000	MI FOOD	MI 50000
20	23							MLE2010	MLE2012	MLE2015	MLE2020	MLE2025	MLE2030
22	25							MLE2210	MLE2212	MLE2215	MLE2220	MLE2225	MLE2230
24	27							MLE2410	10 F0540	MLE2415	MI 50500	MLE2425	MLE2430
25	28							MLE2510	MLE2512	MLE2515	MLE2520	MLE2525	MLE2530
26	30								=				MLE2630
28	32							MLE2810	MLE2812		MLE2820	MLE2825	MLE2830
30	34							MLE3010	MLE3012	MLE3015	MLE3020	MLE3025	MLE3030
31	35									MLE3115			
32	36										MLE3220	MLE3225	MLE3230
35	39								MLE3512	MLE3515	MLE3520	MLE3525	MLE3530
38	42										MLE3820	MLE3825	
40	44								MLE4012	MLE4015	MLE4020	MLE4025	MLE4030
45	50										MLE4520	MLE4525	MLE4530
50	55								MLE5012	MLE5015	MLE5020	MLE5025	MLE5030
55	60											MLE5525	MLE5530
60	65										MLE6020		MLE6030
65	70									MLE6515			MLE6530
70	75									MLE7015	MLE7020		MLE7030
75	80										MLE7520		MLE7530
80	85									MLE8015	MLE8020		MLE8030
85	90												MLE8530
90	95										MLE9020		
95	100												MLE9530
100	105												MLE10030
105	110												
110	115										MLE11020		MLE11030
120	125												
130	135										MLE13020		
140	145												
150	155												
160	165												
										-			

			呼	肉厚	推奨	寸法	取付けすきま						
			長さ	† 肉 厚 T	軸	ハウジング		ハウジング) けけ時					
35	40	50	60	70	80	90	95	100	1	干叫	H7	最小	最大
										3 ^{-0.025} -0.035	5 +0.012	0.025	0.097
										4 ^{-0.025} -0.037	6 +0.012	0.025	0.099
										5 ^{-0.025} -0.037	7 +0.015	0.025	0.102
										6 ^{-0.025} -0.037	8 +0.015	0.025	0.102
										7 ^{-0.025} -0.040	9 +0.015	0.025	0.105
										8 ^{-0.025} -0.040	10 +0.015	0.025	0.105
										9 -0.025 -0.040	11 ^{+0.018}	0.025	0.108
									1.0 _0_0	10 -0.025 -0.040	12 +0.018	0.025	0.111
										12 ^{-0.025} -0.043	14 ^{+0.018}	0.025	0.111
										13 -0.025 -0.043	15 ^{+0.018}	0.025	0.111
										14 ^{-0.025} -0.043	16 ^{+0.018}	0.025	0.111
										15 ^{-0.025} -0.043	17 ^{+0.018}	0.025	0.111
										16 ^{-0.025} -0.043	18 ^{+0.018}	0.025	0.111
										17 ^{-0.025} -0.043	19 ^{+0.021}	0.025	0.114
										18 ^{-0.025} -0.043	20 +0.021	0.025	0.114
										19 ^{-0.025} -0.046	22 +0.021	0.025	0.127
										20 -0.025	23 +0.021	0.025	0.127
									1.5 -0.030	22 ^{-0.025} -0.046	25 ^{+0.021}	0.025	0.127
										24 ^{-0.025} -0.046	27 +0.021	0.025	0.127
MLE2535	MLE2540									25 ^{-0.025} -0.046	28 +0.021	0.025	0.127
										26 ^{-0.025} -0.046	30 +0.021	0.025	0.127
										28 ^{-0.025} -0.046	32 +0.025	0.025	0.131
MLE3035	MLE3040									30 ^{-0.025} -0.046	34 +0.025	0.025	0.131
	MLE3140								2.0 _0.030	31 ^{-0.025} -0.050	35 ^{+0.025}	0.025	0.131
MLE3235	MLE3240	MLE3250							2.0 -0.030	32 ^{-0.025} -0.050	36 ^{+0.025}	0.025	0.131
MLE3535	MLE3540	MLE3550								35 ^{-0.025} -0.050	39 +0.025	0.025	0.135
	MLE3840									38 ^{-0.025} -0.050	42 +0.025	0.025	0.135
MLE4035	MLE4040	MLE4050								40 -0.025	44 +0.025	0.025	0.135
MLE4535	MLE4540	MLE4550								45 ^{-0.025} -0.050	50 +0.025	0.025	0.155
MLE5035	MLE5040	MLE5050	MLE5060		MLE5080				2.5 _0.040	50 ^{-0.025} -0.050	55 +0.030	0.025	0.160
MLE5535	MLE5540		MLE5560						0.040	55 ^{-0.025} -0.055	60 +0.030	0.025	0.165
MLE6035	MLE6040	MLE6050	MLE6060	MLE6070						60 -0.025	65 +0.030	0.025	0.165
	MLE6540	MLE6550	MLE6560	MLE6570						65 +0.035	70 +0.030	0.025	0.245
MLE7035	MLE7040	MLE7050	MLE7060		MLE7080					70 +0.035 +0.005	75 +0.030	0.025	0.245
MLE7535	MLE7540	MLE7550	MLE7560		MLE7580					75 +0.035 +0.005	80 +0.030 0 +0.035	0.025	0.245
	MLE8040	MLE8050	MLE8060		MLE8080					80 +0.005 +0.035	85 0	0.025	0.250
	MLE8540	MLE8550	MLE8560		MLE8580					65 0	90 0	0.025	0.195
MLE9035	MLE9040	MLE9050	MLE9060			MLE9090				90 +0.035	95 ^{+0.035} +0.035	0.025	0.195
NI 540005	MLE9540			NI 540070			MI 540005		0 47 0	95 +0.035 0 +0.035	100 +0.035 0 +0.035	0.025	0.195
MLE10035	MLE10040	MLE10050		MLE10070			MLE10095		2.47 -0.050	100 0	105 0	0.025	0.195
MI E44005	MI E44040	MLE110550	MI E44000	MI E44070			MLE10595			105 +0.035 0 +0.035	110 +0.035 0 +0.035	0.025	0.195
MLE11035		MLE11050		MLE11070			MLE11095			110 +0.035 0 +0.035	115 0	0.025	0.195
	MLE12040	MLE12050	MLE12060	MLE12070	MI Econo		MLE12095			120 +0.035	123 0	0.025	0.200
		MLE14050		MI E44070	MLE13080					130 +0.035	100 0	0.025	0.205
	MLE15040	MLE14050		MLE14070				MLE140100		140 +0.035 -0.005	1-10 0	0.025	0.205
	WILE 15040	MLE15050			MLE15080			MLE150100		150 +0.035 -0.005	100 0	0.025	0.205
		MLE16050			MLE16080			MLE160100		160 ^{+0.035} -0.005	165 +0.040	0.025	0.205

MLEF形 MLEベアリング


注1) 上図のR寸法は肉厚 T_1 =1.0の場合0.75以下、肉厚 T_1 =1.5以上の場合1.0以下です。
2) 外径10mm以下または長さ T_1 mm以下のブッシュの面取寸法は、図示と違い、バリ取り程度の面取を行なっています。

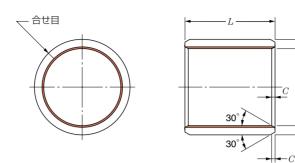
▼ 製品番号の表示方法
2000
R-MLEFOOO
形式記号

					呼び	番号		
内径	外径			長	<u>.,, し</u>		4)	
d	D	FD	4	5	6	7	8	10
5	7	10	MLEF0504	MLEF0505				
6	8	12		MLEF0605	MLEF0606	MLEF0607	MLEF0608	MLEF0610
7	9	13						
8	10	15			MLEF0806		MLEF0808	MLEF0810
10	12	18			MLEF1006		MLEF1008	MLEF1010
12	14	20			MLEF1206		MLEF1208	MLEF1210
14	16	22						MLEF1410
15	17	23						MLEF1510
16	18	24						MLEF1610
18	20	26						MLEF1810
20	23	31						MLEF2010
22	25	33						MLEF2210
24	27	35						
25	28	36						MLEF2510
26	30	38						
28	32	40						
30	34	42						
31	35	45						
32	36	46						
35	39	49						
38	42	52						
40	44	54						
45	50	60						
50	55	65						
55	60	70						
60	65	75						

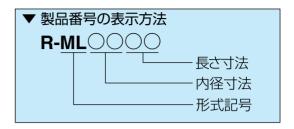
備考 推奨軸及びハウジング(超硬製)を使用した場合の最小すきまは0.025mmです。

MLEW形 MLEベアリング

呼び番号	內 径	外 径	肉 厚 T
MLEW06	8 +0.25	16 _{-0.25}	1.5 ^{-0.03} _{-0.08}
MLEW08	10 ^{+0.25}	18 _{-0.25}	1.5 ^{-0.03} _{-0.08}
MLEW10	12 ^{+0.25}	24 _{-0.25}	1.5 ^{-0.03} _{-0.08}
MLEW12	14 ^{+0.25}	26 _{-0.25}	1.5 ^{-0.03} _{-0.08}
MLEW14	16 ^{+0.25}	30 _{-0.25}	1.5 ^{-0.03} _{-0.08}
MLEW16	18 +0.25	32 _{-0.25}	1.5 ^{-0.03} _{-0.08}
MLEW18	20 +0.25	36 _{-0.25}	1.5 ^{-0.03} _{-0.08}
MLEW20	22 +0.25	38 _{-0.25}	1.5 ^{-0.03} _{-0.08}
MLEW22	24 +0.25	42 _{-0.25}	1.5 ^{-0.03} _{-0.08}
MLEW24	26 ^{+0.25}	44 _{-0.25}	1.5 ^{-0.03} _{-0.08}
MLEW25	28 ^{+0.25}	48 _{-0.25}	1.5 ^{-0.03} _{-0.08}
MLEW30	32 ^{+0.25}	54 _{-0.25}	1.5 ^{-0.03} _{-0.08}
MLEW35	38 +0.25	62 _{-0.25}	1.5 ^{-0.03} _{-0.08}
MLEW40	42 ^{+0.25} ₀	66 _{-0.25}	1.5 ^{-0.03} _{-0.08}
MLEW45	48 +0.25	74 _{-0.25}	2.0 ^{-0.03} _{-0.08}
MLEW50	52 ^{+0.25}	78 _{-0.25}	2.0 ^{-0.03} _{-0.08}


寸法測定温度25℃/単位 mm

			呼び	番号				肉	厚	推图	*************************************	取付けすきま	
		長	さ L	(許容差点	0.4)				,				ッ C G ハウジング) け時
12	15	20	25	30	40	50	60	<i>T</i> 1	T2	軸	ハウジング H7	` 取付 最小	· I
										5 ^{-0.025} -0.037	7 +0.015	0.025	0.102
								1		6 ^{-0.025} -0.037	8 +0.015	0.025	0.102
MLEF0712								1		7 ^{-0.025} -0.040	9 +0.015	0.025	0.105
MLEF0812										8 ^{-0.025} -0.040	10 +0.015	0.025	0.105
MLEF1012	MLEF1015							100	1.0 -0.2	10 ^{-0.025} -0.040	12 ^{+0.018}	0.025	0.111
MLEF1212	MLEF1215	MLEF1220						1.0 -0.025	1.0 -0.2	12 ^{-0.025} -0.043	14 ^{+0.018}	0.025	0.111
MLEF1412	MLEF1415	MLEF1420								14 ^{-0.025} -0.043	16 ^{+0.018}	0.025	0.111
MLEF1512	MLEF1515	MLEF1520	MLEF1525							15 ^{-0.025} -0.043	17 ^{+0.018}	0.025	0.111
MLEF1612	MLEF1615	MLEF1620	MLEF1625							16 ^{-0.025} -0.043	18 +0.018	0.025	0.111
MLEF1812	MLEF1815	MLEF1820	MLEF1825							18 ^{-0.025} -0.043	20 +0.021	0.025	0.114
MLEF2012	MLEF2015	MLEF2020	MLEF2025	MLEF2030						20 -0.025 -0.046	23 +0.021	0.025	0.127
MLEF2212	MLEF2215	MLEF2220	MLEF2225					15	1.5 -0.2	22 ^{-0.025} -0.046	25 +0.021	0.025	0.127
				MLEF2430				1.5 -0.030		24 ^{-0.025} -0.046	27 +0.021	0.025	0.127
MLEF2512	MLEF2515	MLEF2520	MLEF2525	MLEF2530						25 ^{-0.025} -0.046	28 +0.021	0.025	0.127
	MLEF2615	MLEF2620								26 ^{-0.025} -0.046	30 +0.021	0.025	0.127
				MLEF2830						28 ^{-0.025} -0.046	32 ^{+0.025}	0.025	0.131
MLEF3012	MLEF3015	MLEF3020	MLEF3025	MLEF3030	MLEF3040					30 ^{-0.025} -0.046	34 +0.025	0.025	0.131
			MLEF3125					2.0 _0,030	20 0	31 ^{-0.025} -0.050	35 ^{+0.025}	0.025	0.131
				MLEF3230				2.0 -0.030	2.0 -0.2	32 -0.025	36 ^{+0.025}	0.025	0.131
MLEF3512		MLEF3520	MLEF3525	MLEF3530	MLEF3540	MLEF3550				35 ^{-0.025} -0.050	39 +0.025	0.025	0.135
					MLEF3840					38 -0.025 -0.050	42 +0.025	0.025	0.135
MLEF4012		MLEF4020		MLEF4030	MLEF4040					40 -0.025	44 +0.025	0.025	0.135
			MLEF4525		MLEF4540	MLEF4550				45 -0.025	50 +0.025	0.025	0.155
		MLEF5020		MLEF5030	MLEF5040		MLEF5060	2.5_0.040	0 -0.040 2.5 _0 -0.3	50 ^{-0.025} -0.050	55 ^{+0.030}	0.025	0.160
							MLEF5560			55 —0.025 —0.055	60 +0.030	0.025	0.165
				MLEF6030	MLEF6040		MLEF6060			60 ^{-0.025} -0.055	65 ^{+0.030}	0.025	0.165


寸法測定温度25℃/単位 mm

ノックピン穴径	ノックピン位置 P.C.D
1.100~1.300	12 ±0.12
1.100~1.300	14 ±0.12
1.625~1.875	18 ±0.12
2.125~2.375	20 ±0.12
2.125~2.375	23 ±0.12
2.125~2.375	25 ±0.12
3.125~3.375	28 ±0.12
3.125~3.375	30 ±0.12
3.125~3.375	33 ±0.12
3.125~3.375	35 ±0.12
4.125~4.375	38 ±0.12
4.125~4.375	43 ±0.12
4.125~4.375	50 ±0.12
4.125~4.375	54 ±0.12
4.125~4.375	61 ±0.12
4.125~4.375	65 ±0.12

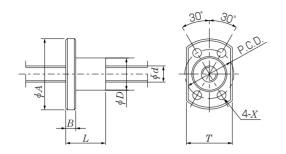
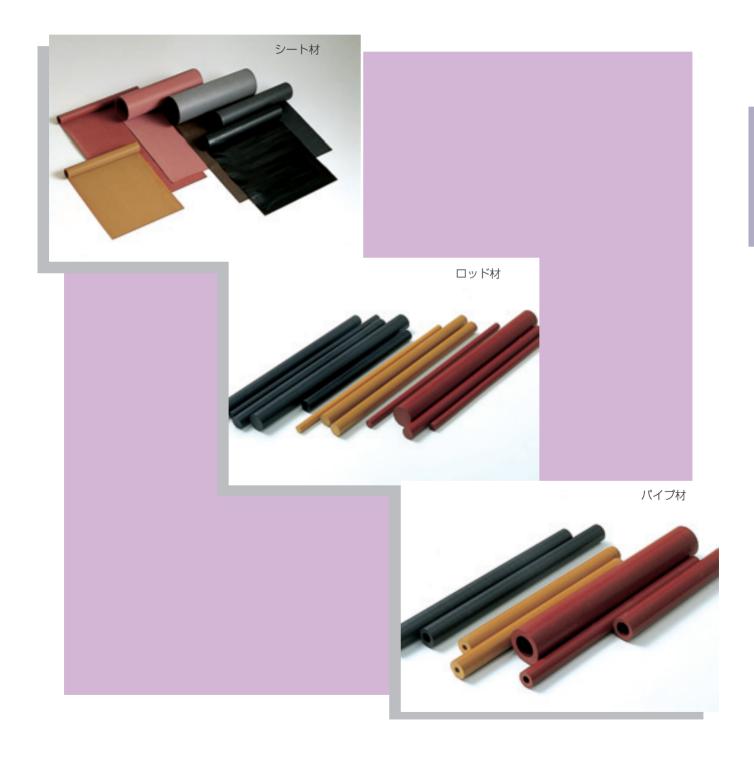


表 と L (評容差 3cs) 3 5 R-ML0303 R-ML0304 R-ML0305 R-ML0306 4 6 R-ML0404 R-ML0505 R-ML0506 R-ML0508 R-ML0506 R-ML0508 R-ML0506 R-ML0508 R-ML0508 R-ML0506 R-ML0606 R-ML0608 R-ML0610 R-ML0710 R-ML0712 R-ML1015 R-ML111 R-ML1215 R-ML1115 R-M		L1/=				בַּֿס	チ び 番 昇	 号				
3 5 R-ML0303 R-ML0304 R-ML0305 R-ML0505 R-ML0606 R-ML0608 R-ML0505 R-ML0506 R-ML0505 R-ML0506 R-ML0505 R-ML0506 R-ML0505 R-ML0505 R-ML0506 R-ML0505 R-ML0505 R-ML0506 R-ML0607 R-ML0608 R-ML0610 R-ML0712 R-ML0712 R-ML0712 R-ML0712 R-ML0712 R-ML0712 R-ML0712 R-ML1010 R-ML0712 R-ML1015 R-ML112 R-ML112 R-ML112 R-ML113 R-ML1 R-ML112 R-ML114 R-ML1412 R-ML1415 R-ML1 R-ML1510 R-	内径	外径				長さ	L (許容差	0)				
R-ML0404	d	D	3	4	5	6	7	8	10	12	15	20
S 7	3	5	R-ML0303	R-ML0304	R-ML0305	R-ML0306						
R-ML0605	4	6		R-ML0404		R-ML0406		R-ML0408				
R-ML0705	5	7		R-ML0504	R-ML0505	R-ML0506		R-ML0508				
8 10 R-ML0806 R-ML0808 R-ML0810 R-ML0812 R-ML0910 9 111 R-ML1006 R-ML1007 R-ML1008 R-ML1010 R-ML1012 R-ML1015 R-ML1 R-ML1016 R-ML1207 R-ML1208 R-ML1210 R-ML1212 R-ML1215 R-ML1 R-ML1215 R-ML1215 R-ML1 R-ML1216 R-ML1210 R-ML1212 R-ML1215 R-ML1 R-ML1315 R-ML1315 R-ML1315 R-ML1 R-ML1316 R-ML1 R-ML1316 R-ML1 R-ML1510 R-ML1510 R-ML1512 R-ML1515 R-ML1 R-ML1510 R-ML1612 R-ML1615 R-ML1 R-ML1610 R-ML1612 R-ML1615 R-ML1 R-ML1610 R-ML1612 R-ML1615 R-ML1 R-ML1715 R-ML1810 R-ML1812 R-ML1815 R-ML1 R-ML1715 R-ML1810 R-ML1812 R-ML1815 R-ML1 R-ML1915 R-ML2 R-ML2010 R-ML2012 R-ML2015 R-ML2 R-ML2210 R-ML2212 R-ML2215 R-ML2 R-ML2210 R-ML2212 R-ML2215 R-ML2 R-ML2212 R-ML2215 R-ML2 R-ML2510 R-ML2 R-ML2515 R-ML2 R-ML2516 R-	6	8			R-ML0605	R-ML0606	R-ML0607	R-ML0608	R-ML0610			
9 11	7	9			R-ML0705		R-ML0707		R-ML0710	R-ML0712		
10 12 R-ML1006 R-ML1007 R-ML1018 R-ML1012 R-ML1015 R-ML1 R-ML1215 R-ML1 R-ML1216 R-ML1216 R-ML1216 R-ML1216 R-ML1216 R-ML1216 R-ML1315 R-ML2315 R-ML3315 R-ML3	8	10				R-ML0806		R-ML0808	R-ML0810	R-ML0812		
12 14 R-ML1206 R-ML1207 R-ML1210 R-ML1212 R-ML1215 R-ML1315 13 15 R-ML1315 R-ML1410 R-ML1412 R-ML1415 R-ML1 14 16 R-ML1610 R-ML1510 R-ML1512 R-ML1515 R-ML1 15 17 R-ML1610 R-ML1610 R-ML1612 R-ML1615 R-ML1 16 18 R-ML1610 R-ML1612 R-ML1615 R-ML1 17 19 R-ML1610 R-ML1612 R-ML1615 R-ML1 19 22 R-ML1812 R-ML1815 R-ML1 20 23 R-ML2010 R-ML2012 R-ML2015 R-ML2 24 27 R-ML2212 R-ML2212 R-ML2215 R-ML2 25 28 R-ML2510 R-ML2512 R-ML2515 R-ML2 26 30 R-ML2512 R-ML2515 R-ML3 28 32 R-ML3012 R-ML3015 R-ML3 30 34 R-ML3012	9	11							R-ML0910			
13 15 R-ML1315 R-ML1412 R-ML1415 R-ML1 R-ML1415 R-ML1 R-ML1510 R-ML1510 R-ML1512 R-ML1515 R-ML1 R-ML1515 R-ML1 R-ML1610 R-ML1612 R-ML1615 R-ML1 R-ML1610 R-ML1612 R-ML1615 R-ML1 R-ML1715 R-ML1715 R-ML1715 R-ML1715 R-ML1810 R-ML1812 R-ML1815 R-ML1 R-ML1915 R-ML2010 R-ML2012 R-ML2012 R-ML2015 R-ML2010 R-ML2012 R-ML2015 R-ML2015 R-ML2215 R-	10	12				R-ML1006	R-ML1007	R-ML1008	R-ML1010	R-ML1012	R-ML1015	R-ML1020
14 16 R-ML1410 R-ML1412 R-ML1415 R-ML1 15 17 R-ML1510 R-ML1512 R-ML1515 R-ML1 16 18 R-ML1610 R-ML1610 R-ML1615 R-ML1 17 19 R-ML1610 R-ML1812 R-ML1815 R-ML1 19 22 R-ML2010 R-ML2012 R-ML2015 R-ML2015 R-ML2016 R-ML2016 R-ML2017 R-ML2017 R-ML2017 R-ML2018 R-ML2019	12	14				R-ML1206	R-ML1207	R-ML1208	R-ML1210	R-ML1212	R-ML1215	R-ML1220
15 17	13	15									R-ML1315	
16 18 R-ML1610 R-ML1615 R-ML1615 R-ML1715 17 19 R-ML1715 R-ML1810 R-ML1812 R-ML1815 R-ML1 19 22 R-ML2010 R-ML2012 R-ML2015 R-ML2 20 23 R-ML2010 R-ML2012 R-ML2015 R-ML2 22 25 R-ML2210 R-ML2212 R-ML2215 R-ML2 24 27 R-ML2510 R-ML2512 R-ML2515 R-ML2 25 28 R-ML2510 R-ML2512 R-ML2515 R-ML2 26 30 R-ML2812 R-ML2815 R-ML2 28 32 R-ML2812 R-ML2815 R-ML3 30 34 R-ML3012 R-ML3015 R-ML3 31 35 R-ML3012 R-ML3 R-ML3 32 36 R-ML3512 R-ML3 33 39 R-ML3512 R-ML3 40 44 R-ML4012 R-ML4 40 44 R-ML4012 R-ML5 50 60 R-ML5010 <td< td=""><td>14</td><td>16</td><td></td><td></td><td></td><td></td><td></td><td></td><td>R-ML1410</td><td>R-ML1412</td><td>R-ML1415</td><td>R-ML1420</td></td<>	14	16							R-ML1410	R-ML1412	R-ML1415	R-ML1420
17 19 R-ML1715 18 20 R-ML1810 R-ML1812 R-ML1815 R-ML1 19 22 R-ML2010 R-ML2012 R-ML2015 R-ML2 20 23 R-ML2010 R-ML2012 R-ML2015 R-ML2 22 25 R-ML2210 R-ML2212 R-ML2215 R-ML2 24 27 R-ML2510 R-ML2512 R-ML2515 R-ML2 26 30 R-ML2510 R-ML2512 R-ML2515 R-ML2 28 32 R-ML2812 R-ML3015 R-ML3 30 34 R-ML3012 R-ML3015 R-ML3 31 35 R-ML3012 R-ML3 32 36 R-ML3512 R-ML3 34 R-ML3512 R-ML3 35 39 R-ML4012 R-ML4 40 44 R-ML4012 R-ML4 50 55 R-ML5010 R-ML5 50 60 R-ML5010 R-ML5	15	17							R-ML1510	R-ML1512	R-ML1515	R-ML1520
R-ML1810 R-ML1812 R-ML1815 R-ML1 R-ML1810 R-ML1812 R-ML1815 R-ML1 R-ML2010 R-ML2012 R-ML2015 R-ML2 R-ML2010 R-ML2012 R-ML2015 R-ML2 R-ML2010 R-ML2012 R-ML2015 R-ML2 R-ML2010 R-ML201	16	18							R-ML1610	R-ML1612	R-ML1615	R-ML1620
19 22	17	19									R-ML1715	
20 23 22 25 24 27 25 R-ML2210 24 27 25 R-ML2210 26 30 26 30 28 R-ML2510 28 R-ML2812 30 R-ML2815 31 35 32 R-ML3012 34 R-ML3012 35 39 36 R-ML3512 37 R-ML3 38 42 40 44 44 R-ML4012 45 50 55 60 60 65	18	20							R-ML1810	R-ML1812	R-ML1815	R-ML1820
22 25 24 27 25 28 26 30 28 R-ML2510 26 30 28 32 30 R-ML2812 30 R-ML2815 31 35 32 36 33 R-ML3012 34 R-ML3012 35 39 36 R-ML3512 37 R-ML3 38 42 40 44 44 R-ML4012 45 50 55 60 60 65	19	22									R-ML1915	
24 27 R-ML2415 R-ML2 25 28 R-ML2510 R-ML2512 R-ML2515 R-ML2 26 30 R-ML2812 R-ML2815 R-ML2 28 32 R-ML2815 R-ML2 30 34 R-ML3012 R-ML3015 R-ML3 31 35 R-ML3012 R-ML3 R-ML3 35 39 R-ML3512 R-ML3 38 42 R-ML4012 R-ML4 40 44 R-ML4012 R-ML4 50 55 R-ML5010 R-ML5 55 60 R-ML5010 R-ML5	20	23							R-ML2010	R-ML2012	R-ML2015	R-ML2020
25 28 26 30 28 32 30 34 31 35 32 36 33 39 34 R-ML3012 35 39 36 R-ML3512 37 R-ML3 38 42 40 44 40 44 45 50 55 60 60 65	22	25							R-ML2210	R-ML2212	R-ML2215	R-ML2220
26 30 R-ML2 28 32 R-ML2815 R-ML2 30 34 R-ML3012 R-ML3015 R-ML3 31 35 R-ML3 R-ML3 32 36 R-ML3512 R-ML3 38 42 R-ML3 R-ML4 40 44 R-ML4012 R-ML4 50 55 R-ML5010 R-ML5 55 60 R-ML5 R-ML5	24	27									R-ML2415	R-ML2420
28 32 30 34 31 35 32 36 35 39 38 42 40 44 45 50 55 60 60 65	25	28							R-ML2510	R-ML2512	R-ML2515	R-ML2520
30 34 R-ML3012 R-ML3015 R-ML3 31 35 R-ML3 32 36 R-ML3512 R-ML3 33 39 R-ML3512 R-ML3 34 42 R-ML3 40 44 R-ML4012 R-ML4 45 50 R-ML5010 R-ML5 55 60 R-ML5	26	30										R-ML2620
31 35 32 36 35 39 38 42 40 44 45 50 50 55 60 65	28	32								R-ML2812	R-ML2815	R-ML2820
32 36 35 39 38 42 40 44 45 50 50 55 60 65	30	34								R-ML3012	R-ML3015	R-ML3020
35 39 38 42 40 44 45 50 50 55 60 65	31	35										
38 42 40 44 45 50 50 55 60 65	32	36										R-ML3220
40 44 R-ML4012 R-ML4 45 50 R-ML5010 R-ML5 55 60 60 65	35	39								R-ML3512		R-ML3520
45 50 R-ML4 50 55 R-ML5010 R-ML5 60 65	38	42										R-ML3820
50 55 55 60 60 65	40	44								R-ML4012		R-ML4020
55 60 60 65	45	50										R-ML4520
60 65	50	55							R-ML5010			R-ML5020
	55	60										
65 70	60	65										
	65	70										
70 75	70	75										

		呼び	番号				堆 将	 寸法	取付け	
	£	€ さ <i>L</i> (許容差 .0.25)			寸法			(H7超硬製 取付	ハウジング) け時
25	30	40	50	60	80	C	軸 hフ	, ハウジング H7	最小	最大
						0.3	3 -0.010	5 ^{+0.012}	0.025	0.075
						0.5	4 -0.012	6 ^{+0.012}	0.025	0.085
						0.5	5 ⁰ _{-0.012}	7 ^{+0.015}	0.025	0.095
						0.5	6 _{-0.012}	8 ^{+0.015}	0.025	0.095
						0.5	7 _{-0.015}	9 ^{+0.015}	0.025	0.100
						0.5	8 _{-0.015}	10 +0.015	0.025	0.100
						0.5	9 _{-0.015}	11 ^{+0.015}	0.025	0.100
						0.5	10 -0.015	12 ^{+0.018}	0.025	0.100
						0.5	12 -0.018	14 +0.018	0.025	0.115
						0.5	13 -0.018	15 ^{+0.018}	0.025	0.115
						0.5	14 _{-0.018}	16 ^{+0.018}	0.025	0.115
R-ML1525						0.5	15 _{-0.018}	17 ^{+0.018}	0.025	0.115
R-ML1625						0.5	16 _{-0.018}	18 ^{+0.018}	0.025	0.115
						0.5	17 -0.018	19 +0.021	0.025	0.115
R-ML1825						0.5	18 _{-0.018}	20 +0.021	0.025	0.115
						0.7	19 -0.021	22 +0.021	0.025	0.130
R-ML2025	R-ML2030					0.7	20 -0.021	23 +0.021	0.025	0.130
R-ML2225						0.7	22 _{-0.021}	25 ^{+0.021}	0.025	0.130
R-ML2425	R-ML2430					0.7	24 -0.021	27 +0.021	0.025	0.130
R-ML2525	R-ML2530					0.7	25 -0.021	28 +0.021	0.025	0.130
R-ML2625	R-ML2630					0.9	26 -0.021	30 +0.021	0.025	0.130
	R-ML2830					0.9	28 -0.021	32 +0.025	0.025	0.135
R-ML3025	R-ML3030	R-ML3040				0.9	30 -0.021	34 +0.025	0.025	0.135
R-ML3125		R-ML3140				0.9	31 -0.025	35 +0.025	0.035	0.165
	R-ML3230					0.9	32 -0.025	36 +0.025	0.035	0.165
R-ML3525	R-ML3530	R-ML3540	R-ML3550			0.9	35 -0.025	39 +0.025	0.035	0.165
		R-ML3840				0.9	38 -0.025	42 +0.025	0.035	0.165
	R-ML4030					0.9	40 -0.025	44 +0.025	0.035	0.165
R-ML4525	R-ML4530	R-ML4540	R-ML4550			1.1	45 -0.025	50 +0.025	0.035	0.165
R-ML5025			R-ML5050	R-ML5060		1.1	50 -0.025	55 ^{+0.030}	0.035	0.165
	R-ML5530			R-ML5560		1.1	55 _{-0.030}	60 +0.030	0.045	0.195
	R-ML6030			R-ML6060		1.1	60 -0.030	65 +0.030	0.045	0.195
	R-ML6530	R-ML6540		R-ML6560		1.1	65 -0.030	70 +0.030	0.045	0.195
		R-ML7040		R-ML7060	R-ML7080	1.1	70 -0.030	75 ^{+0.030}	0.045	0.195

ミニアチュア 樹脂すべりねじ



										3/4//3/	<u></u>	7 +W IIIII
	ねし	ジ軸					樹脂ナ	トット				(1)
品 番	呼び径	呼び	外 径	全 長	フラ	ンジ	取	付け	穴	2面幅	条数	標準軸長
	d	リード	D .8.2	L	A	B	P.C.D	穴径 X	穴数	T	大 女	
R-MSS0401Y	4	1	10	11.5	23		15	2.9		15	1	200
R-MSS0402Y	_	2	10	11.5	23		15	2.9		15	2	200
R-MSS0601Y		1				3.5					1	
R-MSS0602Y	6	2	12	14.5	26	3.5	18			17	'	
R-MSS0609Y	0	9	12	14.5	20		10				4	200
R-MSS0618Y		18						3.4			4	300
R-MSS0801Y		1						3.4			1	
R-MSS0802Y	8	2	1 44	18	00	4	21		4	18	'	
R-MSS0812Y		12	14	18	29	4	21		4		4	400
R-MSS0824Y		24									6	400
R-MSS1002Y		2									1	300
R-MSS1015Y	10	15	16	22	33		24			21	4	450
R-MSS1030Y		30				_		4.5			6	450
R-MSS1202Y		2				5		4.5			1	300
R-MSS1218Y	12	18	18	25	35		26			22	0	500
R-MSS1236Y		36									6	500

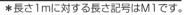
① ねじ軸の軸端は加工なし(寸切)標準です。 なお,軸端加工のご要求にもお応えしますのでご指示ください。

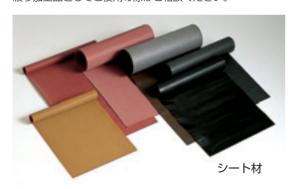
3. 2 NTN精密樹脂素材標準品寸法

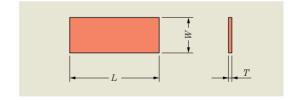
NTN精密樹脂商品は機械,電気,電子,化学工業,その他各産業分野でご利用いただいています。エンジニアリングプラスチック材料群の代表的なふっ素樹脂(ベアリーFL3000,ベアリーFL3000,ベアリーFL3307等)と高分子量ポリエチレン樹脂(ベアリーUH3000等)のシート材,ロッド材,パイプ材をお届けします。

シート材

圧縮成形で成形した大型ビレット材料をスカイブ(切削加工)により製作したものです。接着して用いる場合は接着可能化処理(TOS)を行う必要があります。 ただしベアリーUH3954は接着可能化処理はできません。


ベアリーFL3307は接着可能化処理が標準です。


シート材料寸法表


	寸 法			材料										
厚み (T)	幅 (W)	連続最大長さ* (L) M	ベアリー											
mm	mm	m'	FL3000	FL3020	FL3030	FL3040	FL3307	FL3700	UH3954					
0.1±0.02									0					
0.2±0.02									0					
0.3 ± 0.03			0	0	0	0	0	0	0					
0.4±0.04		10	0	0	0	0	0	0	0					
0.5±0.05		10	0	0	0	0	0	0	0					
0.6±0.06			0	0	0	0	0	0						
0.8±0.06	300 ⁺³⁰		0	0	0	0	0	0	0					
1 ±0.1	-		0	0	0	0	0	0	0					
1.2±0.1	(ベアリー		0	0	0	0	0	0						
1.5±0.1	FL3020は 500 +30)	5	0	0	0	0	0	0						
2 ±0.2	300 0 7		0	0	0	0	0	0						
2.5±0.2								0	0	0	0	0	0	
3 ±0.3			0	0	0	0	0	0						
4 ±0.3		1	0	0	0	0	0	0						
5 ±0.4			0	0	0	0	0	0						
6 ±0.5			0	0	0	0	0	0						

○印が適応材料です。

絞り加工品としてご使用の際はご相談ください。

*ご注文の際は下記品番にてご指示ください。

(例) R-T0.3×300×M2T0

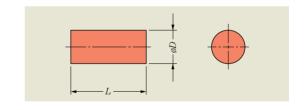
厚み0.3mm, 幅300mm, 長さ2mで片面接着可能化処理したベアリーFL3000材です。

■ロッド材

ラム押出しにより丸棒状に成形した素材です。

旋削加工、フライス加工等によりご希望の形状に加工できます。

ロッド材料寸法表


法				
74		材	料	
長さ(L) mm	ベアリー FL 3000	ベアリー FL 3030	ベアリー FL 3700	ベアリー UH 3000
	0		0	
	0	0	0	
	0		0	
	0		0	
			0	
	0		0	
1 000*	0	0	0	0
1 000	0		0	
	0		0	0
	0	0		0
	0		0	
	0		0	
	0			
	0		0	
	0		0	
		mm FL 3000	1 000* The color of the colo	mm FL 3000 FL 3030 FL 3700 O O O O

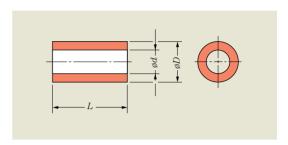
○印が適応材料です。

*長さ1 000mmに対する長さ記号はM1です。

素材寸法には切削加工しろが付いておりません。

*ご注文の際は下記品番にてご指示ください。

(例) R-R13×M1W


外径13mm, 長さ1mのベアリーFL3700材です。

パイプ材

ラム押出しにより円筒状に成形した素材です。 旋削加工,フライス加工等によりご希望の形状に加工できます。

パイプ材料寸法表

7(1) 7/13/14	 寸 法			 材	料	
内径(p d)	外径(p D)	長さ (L)	ベアリー	ベアリー	ベアリー	ベアリー
mm	mm	mm	FL 3000	FL 3030		UH 3000
7	22			0		
9	19		0		0	
12	20		0		0	
13	21					0
13	28		0		0	
14	23		0	0	0	
14	25		0		0	
15	20				0	
15	23		0			
15	33				0	
16	26		0			
16	28	1 000*			0	
16	30	1 000	0			
17	26			0		
18	26		0		0	
19	33		0		0	0
21	38		0		0	
21	42				0	
21	45					0
22	31			0		
22	32			0	0	
27	42		0		0	
28	37		0		0	
32	41		0			
34	44		0		0	

○印が適応材料です。

*長さ1 000mmに対する長さ記号はM1です。

素材寸法には旋削加工しろが付いておりません。

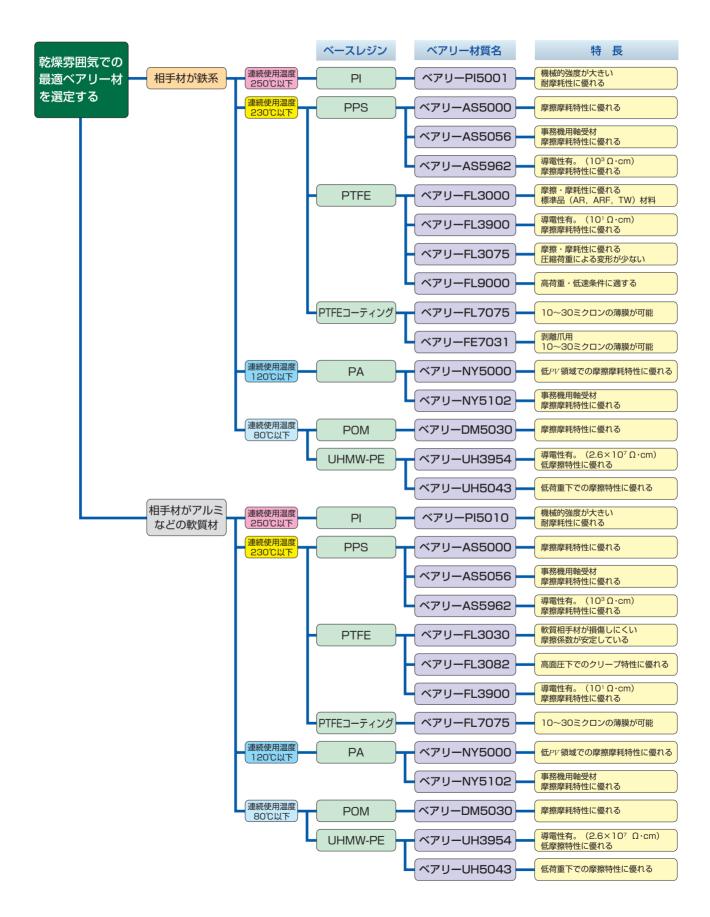
*ご注文の際は下記品番にてご指示ください。

(例) R-U13×23×M1J

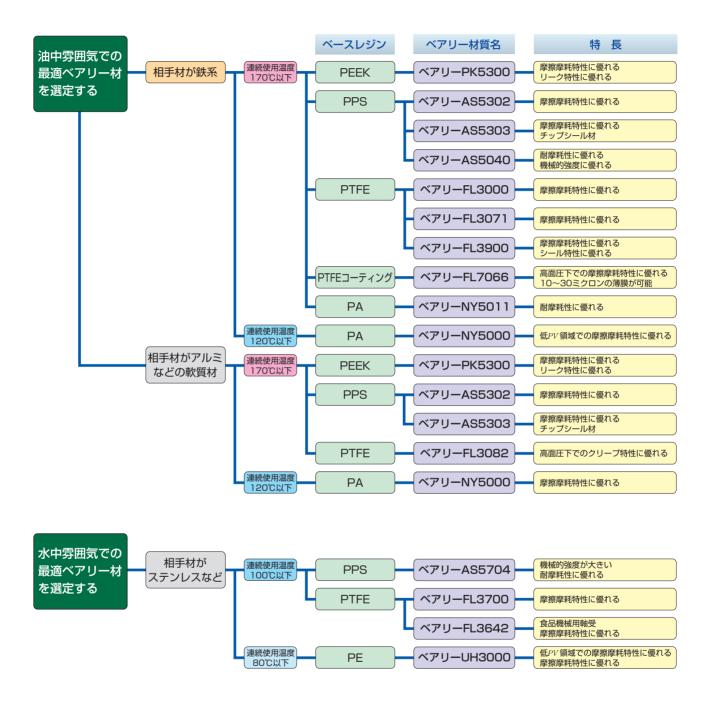
内径13mm, 外径23mm, 長さ1mのベアリーFL3030材です。

4. 1 ベアリー材料のベースレジンと特長

NTN精密樹脂は、さまざまな仕様条件や用途に合わせた樹脂材料を準備しています。 各種ベアリー材料のベースレジンと特長を表3に示します。


表3 ベアリー材料	4のベースレジンと特長	[] :成形方法
グレード	ベースレジン	特長
ベアリーPI	ポリイミド	最高級の耐熱樹脂であるポリイミドに特殊充填剤を加え,特性を向上させた材料です。 優れた耐熱性,強度特性を有します。 熱硬化性,熱可塑性タイプがあり用途に応じ使い分けます。 吸水性が高いことに注意し製品設計を行います。 [射出成形,押出成形,圧縮成形,コーティング]
ベアリーAI	ポリアミドイミド	ベアリーPIにくらべ耐熱性が低いが,耐衝撃性,耐疲労性等機械的特性が優れます。 [射出成形,押出成形,圧縮成形]
ベアリーPK	ポリエーテルエーテルケトン	ポリイミドに近い優れた耐熱性と、耐薬品性、耐衝撃性、耐疲労性、自己潤滑特性を有するポリエーテルケトンをベースとした材料です。ベアリーPI、AIに近い特性をもちますが、吸水性が小さい特長を備えています。成形収縮率が大きいことに注意し製品設計を行います。
ベアリーFL	ふっ素樹脂 (四ふっ化エチレン)	ベアリーFLのベースレジンであるふっ素樹脂は、低摩擦・耐摩耗性、非粘着性、耐熱性、耐薬品性、に極めて優れた樹脂です。 ベアリーFLは、この優れた特性を持つふっ素樹脂を基に種々の用途に合った充 填剤を加えた材料です。 [圧縮成形、押出成形、コーティング]
ベアリーFE	ふっ素樹脂 (四ふっ化エチレン以外) ふっ素オイル	ベアリーFEは,ベアリーFLにくらべ特性は若干低いが,成形性に優れます。また低摩擦,耐摩耗性,非粘着コーティング材又は表面処理材としても優れています。 [射出成形,コーティング]
ベアリーER	エラストマー (すべるゴム)	ベアリーERはエラストマーをベースとした材料です。「すべるゴム」は,弾性をもったふっ素樹脂系摺動材です。弾性,耐熱性,低摩擦,耐摩耗性,非粘着性,耐クリープ性に優れます。 [加硫成形]
ベアリーAS	ポリフェニレンサルファイド	耐熱性,耐薬品性,機械的強度,成形性にすぐれたポリフェニレンサルファイドをベースとした材料で,最も広範囲に使用されます。 量産性,コストパフォーマンスに優れた材料です。 [射出成形]
ベアリーDM	ポリオキシメチレン (ポリアセタール)	耐疲労性,耐クリープ性,耐摩耗性,寸法安定性に優れたポリオキシメチレンをベースとした材料です。分子中に酸素を多く含んでいるため難燃性の付与は困難です。ベアリーNYと同様スーパーエンプラをベースとした材料にくらべ経済性に優れています。 [射出成形]
ベアリーNY	ポリアミド	代表的な汎用エンプラであるポリアミドをベースとした材料です。 耐衝撃性,耐摩耗性に優れます。スーパーエンプラ材にくらべ耐熱性は低下しますが経済性に優れています。 吸水性が高いことに注意し製品設計を行います。 [射出成形]
ベアリーUH	ポリエチレン	スーパーエンプラをベースとした材料にくらべ耐熱性は劣りますがポリエチレンの優れた低摩擦・耐摩耗性,非粘着性,耐薬品性,耐衝撃,電気的特性を活かした材料です。 成形収縮率,熱膨張係数が大きく,難接着性の材料です。 [射出成形,押出成形,圧縮成形]

[■]ベアリーPI、ベアリーAIを材料とする商品は、特定の用途、形状の場合には「外国為替及び外国貿易法」等に基づく輸出規制に該当します。 NTN株式会社は、外国為替及び外国貿易法等により規制されている製品・技術については、法令に違反して輸出しないことを基本方針とし ております。本カタログに記載されている製品の該非判定については、当社支店・営業所までお問合せください。


[■]ベアリー材は欧州のELV及びRoHS指令に適合しています。

4.2 ベアリー材料選定 - 乾燥雰囲気-

仕様条件(雰囲気・相手材・使用温度)に応じたベアリー材料の選定の目安を示します。

ベアリー材料選定 -油中・水中雰囲気-

4.3 各種グレードの特長と代表的特性値

表4 機械加工用(圧縮成形,押出成形)

材料名称	ベースレジン		特長	用 途
ベアリーFL3000	PTFE	MA	・圧縮荷重による変形が少ない ・摩擦、摩耗特性に優れる	・すべり軸受 ・バルブシート ・ピストンリング
ベアリーFL3020	PTFE		・高面圧下での摩擦係数が小さい ・耐候性に優れる	・すべり支承 ・エクスパンション
ベアリーFL3030	PTFE	MIS	・軟質の相手材が損傷しにくい ・摩擦係数が安定している	・すべり軸受 ・摩擦板 ・ピストンリング
ベアリーFL3060	PTFE	-200	・耐クリープ性に優れる	・ベアリーML型ライナ専用材
ベアリーFL3071	PTFE	@	・摺動性,耐クリープ性に優れる	・コンプレッサシール
ベアリーFL3075	PTFE	ಂಂ	・軟質の相手材が損傷しにくい	・ピストンリング ・ピストンカップシール
ベアリーFL3082	PTFE	®00	・軟質の相手材が損傷しにくい ・耐クリープ性に優れる	・ピストンリング ・ピストンカップシール
ベアリーFL3307	PTFE	16	・圧縮クリープに優れる	・工作機械用摺動材料
ベアリーFL3642	PTFE	1003	・食品関連規格を合格 ・耐摩耗性に優れる	・食品機械用軸受・シール
ベアリーFL3700	PTFE	1112	・水中での耐摩耗性が優れる ・耐薬品性に優れる	· 水中用軸受 · 薬液中軸受
ベアリーFL3900	PTFE	/////	· 導電性をもつ (体積抵抗率:10Ω·cm) · 摩擦,摩耗特性に優れる	・アースボタン・ブラシ
ベアリ―UH3000	PE	5000	・低PV値での摩擦、摩耗特性に優れる ・耐衝撃性に優れる	・すべり軸受 ・ワッシャ
ベアリーUH3954	PE	200	・帯電防止効果がある ・ざらつき摩耗が小さい (砂や紙等に対する摩耗)	・発音防止ワッシャ・カセットシム・導電シート
ベアリーER3000	ムビ素っ心	O .	・弾性体で低摩擦係数である ・シール性、耐薬品性、耐熱性、耐摩耗性、 非粘着性に優れる ・食品適合規格を合格	・Oリング ・食品機械用シール ・すべり軸受

注1) 硬さ:無印はデュロメータD, Hsはゴム硬度。 2) 線膨張係数:室温~150℃の平均線膨張係数を示す。 備考:この値は代表的なテスト結果を示す。

比 重	圧縮クリープ%	硬 さ ¹⁾	引張強さ MPa	伸 び <i>%</i>	吸水率	線膨張係数 ²⁾ ×10 ⁻⁵ /℃	連続使用温度
2.28	8.1	66	15	200	0.03	8.3	260
2.23	6.8	64	22	249	0.03	12.4	260
1.98	4.5	62	12	171	0.09	9.8	260
3.80	3.2	70	10	100	0.09	8.8	260
2.09	7.8	68	17	230		13.0	260
2.32	5.5	65	14	238		13.0	260
2.15	2.5	66	18.9	254		11.5	260
3.39	4.0	67	20	220		10.4	260
2.02	8.4	64	20	234	0.02	15.2	260
2.10	3.3	70	16	130	0.07	9.9	260
2.07	1.4	70	14	34		9.8	260
0.94	11.0	65	20	200	0.01	20.0	80
0.94	10.0	65	39	200	0.01	17.0	80
1.78		Hs70 Hs80 Hs90	10 10 9	290 200 120	0.05	10.0	230

NTN精密樹脂材料

表5 射出成形用材料

表5 射出队形用材料				
材料名称	ベースレジン		特長	用途
ベアリーPI5001	Pl	OS T	・耐摩耗性に優れる	・すべり軸受 ・ワッシャ ・ピストンリング
ベアリ―PI5010	Pl	್ಧಿ	・軟質の相手材が損傷しにくい	・すべり軸受 ・スラスト受け
ベアリーPI5030	PI	900	・機械的強度が大きい	・歯車
ベアリーAI5003	PAI	00000	・耐衝撃性に優れる ・機械的強度が大きい	・事務機用歯車 ・断熱材 ・電気・電子部品
ベアリーUH5043	PE	2.4.42	· 帯電防止性 (表面抵抗10 ¹² Ω以下)	・ガイドローラ
ベアリーAS5000	PPS		・高温用摺動材料 ・許容面圧が大きい ・軟質の相手材が損傷しにくい	・すべり軸受 ・摩擦板 ・往復動軸受
ベアリーAS5005	PPS	್ಯಾಂ	・許容面圧が大きい ・軟質の相手材が損傷しにくい	・すべり軸受・標準品ベアリーBRF専用材
ベアリーAS5040	PPS	9000	・歯車としての強度に優れる	・事務機用ローラ用歯車
ベアリーAS5056	PPS	000	・軟質の相手材が損傷しにくい ・高温での摩擦摩耗特性に優れる	・事務機用ローラ用軸受
ベアリーAS5962	PPS	00000	・軟質の相手材が損傷しにくい ・導電性をもつ(体積抵抗率10°Ωcm)	・事務機用軸受・ブラシ
ベアリーAS5302	PPS	••••	・油中での摩擦摩耗特性に優れる	・油中用軸受,ワッシャ
ベアリーAS5303	PPS	00	・油中での摩擦摩耗特性に優れる	・スクロールコンプレッサ用 チップシール
ベアリーAS5704	PPS	* o l	・水中での耐摩耗性が優れる ・耐薬品性に優れている	· 水中軸受 · 薬液中軸受

注1) 硬さ:ロックウェル。 2) 線膨張係数:室温~150℃の平均線膨張係数を示す。 備考:この値は代表的なテスト結果を示す。

比重	圧縮クリープ%	硬 さ ^{])}	引張強さ MPa	伸 び %	曲げ強さ MPa	曲げ弾性率 MPa	吸水率	線膨張係数 ²⁾ ×10-5/℃	連続使用温度
1.49		M94	66	1.3	106	8 340	0.10	2.2	240
1.46	0.2	M70	75	6.7	114	3 630	0.30	4.5	240
1.58	0.2	M99	158	2.6	240	10 890	0.30	1.7	240
1.40	0.2	E91	190	12	216	4 700	0.28	4.0	250
0.97			44	7.4	38	1 800	0.06		80
1.53	0.3	R110	59	3	64		0.05	8.0	230
1.54	0.3	1	59	3	64		0.05	8.1	230
1.66		R120	177	1.7	235		0.01	1.8	230
1.58		R102	58		96	4 700	1	8.7	230
1.71		R100	32.5	2.9	54	7 500	1	7.6	230
1.44		M88	65	1.6	119	4 730		6.1	230
1.40		R117	93	2.2	169	5 940		4.7	230
1.64		R112	54	0.7	103	10 000	0.04	4.5	230

NTN精密樹脂材料

表6 射出成形用材料

材料名称	ベースレジン		特長	用途
ベアリーPK5030	PEEK	000	・耐摩耗性に優れる(テープ専用材)	・電装関連スラストワッシャ
ベアリーPK5300	PEEK	000	・油中での耐摩耗性, 低摩擦性, 耐薬品性, 耐熱性に優れる	・AT, CVT用シールリング
ベアリ―NY5000	PA	-40-	・低PV値での摩擦,摩耗特性が優れる	・戸車 ・ミッションチェンジレバー部 球面受
ベアリ―NY5011	PA	. °00	・油中での耐摩耗性, 低摩擦性, 耐薬品性, 耐熱性に優れる	・ミッション用 スラストワッシャ
ベアリ―NY5102	PA	0000	・耐摩耗性に優れる・吸水性が低い	・プリンタ用軸受 ・すべり軸受
ベアリーDM5030	POM		・耐摩耗性に優れ,摩擦係数が長期的に低 く安定する ・アルミ,銅系材に適する	・すべり軸受 ・歯車 ・ローラ

注1) 硬さ:無印はデュロメータD,他はロックウェル。 2) 線膨張係数:室温~150℃の平均線膨張係数を示す。 備考:この値は代表的なテスト結果を示す。

表7 コーティング用材料

材料名称	ベースレジン		特長	用 途
ベアリーFL7066	_	//=°0	・高面圧下での摩擦摩耗に優れる	・コンプレッサ用摺動部材・油圧ジャッキプレート
ベアリーFL7075	_	/ ○■	・摩擦, 摩耗特性に優れる ・強固な被膜が可能	・ワッシャ ・バルブプレート ・ローラ
ベアリーFE7031	_	* **	・非粘着性に優れる ・強固な被膜が可能	・分離爪 ・スライドガイド

備考:この値は代表的なテスト結果を示す。

比 重	圧縮クリープ	硬 さ 1)	引張強さ	伸び	曲げ強さ	曲げ弾性率	吸水率	線膨張係数	連続使用温度
	%		MPa	%	MPa	MPa	%	×10 ⁻⁵ /℃	င
1.30			130	100			0.13	5.7	260
1.63		M79	81	1.3	129	9 710	_	3.0	260
1.40	0.6	68	24	15	48	1 470			100
1.30		M98	157	3	235	7 350		7.0	140
1.10		R112	74	40	103	2 350			
1.42		_	49	35	78	2 600	0.3	10.0	100

膜厚		密着性		連続	連続 焼付温度		コーティング推奨下地材質			
μm	鉛筆硬度	クロスカット 試 験	描画試験	使用温度	使用温度		アルミ	樹脂		
10~30	2H	10	5	220	230	0	0	—		
10~30	Н	10	5	220	230	0	0	0		
10~30	Н	10	5	220	230	0		0		

4.4 摩擦係数・比摩耗量

樹脂すべり軸受の摩擦係数・比摩耗量は,使用条件によって大きく変わります。

NTN精密樹脂の代表的材料グレードの摩擦係数・比摩耗量と試験条件を併記し、表8~10に代表値を示します。

圧縮成形材料

表8 NTN精密樹脂材料(圧縮成形材料)の摩擦係数・比摩耗量

表8 NTN精密樹脂	1777年(11年1月137)	/约 /47 /02 /丰1宗 /示:	試 験	 条 件				比摩耗量
材料名称	試験種類	相手材	面圧 MPa	すべり速度 m/min	潤滑		摩 擦 係 数	×10-8mm ³ /N·m
	スラスト	SUJ2	0.25	128	無	室温	0.24	10
ベアリーFL3000 ¹	スラスト	S45C	3	120	油 (ATF)	室温	0.10	16
ベアリーFL3020	往復動	SUS304	10	0.18	無	室温	0.09	_
ベアリーFL3030	スラスト	SUS304	0.4	110	無	室温	0.20	10
ベアリーFL3071	スラスト	S45C	1	120	油 (エンジンオイル)	室温	0.07	63
ベアリーFL3075	スラスト	硬質アルマイト (下地A5056)	1	128	無	室温	0.21	18
ベアリーFL3082 -	スラスト	硬質アルマイト (下地A5052)	4	32	無	室温	0.15	35
V 7 1 20002	スラスト	ADC12	3	120	油(冷凍機油)	室温	0.06	16
ベアリーFL3700	スラスト	SUS304	0.4	25	水	室温	0.17	174
ベアリーFL3900	スラスト	S45C	3	120	油 (ATF)	室温	0.12	7
ベアリ―UH3000	スラスト	S45C	0.4	25	無	室温	0.23	15
ベアリーFL9000	往復動	S45C	30	0.6	無	室温	0.08	44
ベアリーER3000 :	スラスト	SUJ2	0.23	128	無	室温	_	33
· V y—Enaudu	スラスト	SUJ2	0.3	1	無	室温	0.28	_

射出成形材料・コーティング材料

表9 NTN精密樹脂材料(射出成形材料)の摩擦係数・比摩耗量

双5 NIIN相击倒距			試 験	条 件				比摩耗量
材料名称	試験種類	相手材	面圧 MPa	すべり速度 m/min	潤滑	雰囲気温度℃	摩 擦 係 数	×10 ⁻⁸ mm ³ /N·m
ベアリーPI5001 :	スラスト	SUJ2	2	128	無	室温	_	62
77 9-PI5001	スラスト	SUJ2	0.5	128	無	室温	0.10	-
ベアリーAS5000	スラスト	SUJ2	0.6	64	無	室温	0.18	30
ベアリーAS5040	スラスト	S45C	3	120	油 (ATF)	室温	0.10	2
ベアリーAS5056	ラジアル	ニッケルメッキ (下地SUM)	3	4.6	無	150	0.07	53
ベアリーAS5302	スラスト	ADC12	3	120	油(冷凍機油)	室温	0.05	4
ベアリーAS5303	スラスト	S45C	3	120	油(冷凍機油)	室温	0.06	5
ベアリーPK5301	スラスト	ADC12	3	120	油 (ATF)	室温	0.05	1
ベアリ―NY5000	スラスト	S45C	0.4	25	無	室温	0.28	37
ベアリ―NY5011	スラスト	S45C	3	120	油 (ATF)	室温	0.10	5
ベアリ―NY5102	スラスト	S45C	0.4	25	無	室温	0.20	33
ベアリーDM5030	スラスト	S45C	0.4	25	無	室温	0.20	96
表10 NTN精密樹	 脂材料(コーテ	 ィング材料)の暦	摩擦係数・比摩	————— 耗量				
ベアリーFL7075	スラスト	SUS304	0.5	30	無	室温	0.25	100
ベアリーFL7066	スラスト	ADC12	_	60	油(冷凍機油)	室温	0.03	49

4.5 化学的特性

各種グレードの主な耐薬品性を**表11**に示します。下記は各グレードのベースレジンの特性であり、配合されている充填剤により特性が異なりますので、選定にあたってはご相談ください。

表11 ベアリー材料の化学的特性

	薬品名	ベアリー FL	ベアリー FE	ベアリー PI	ベアリー Al	ベアリー UH	ベアリー AS	ベアリー PK	ベアリー NY	ベアリー DM	ベアリー ER3000系
	濃硫酸	0	(×	_	0	0	×	×	×	0
	15%酢酸	0	0	\triangle	0	0	0	0	×	×	×
	75%酢酸	0	0	\triangle	0	×	0	0	×	×	×
	塩酸	0	0	0	0	0	0	0	×	×	0
	15%硝酸	0	0	0	_	0	0	0	×	×	0
酸	70%硝酸	0	0	\triangle	×	×	×	0	×	×	0
	ぎ酸	0	0	\triangle	×	0	0	×	×	×	×
	85%りん酸	0	0	\triangle	0	×	0	0	×	×	0
	40%クロム酸	0	0	_		×	0	0	×	×	
	100%乳酸	0	0	\triangle	0	0	0	0	×	_	0
	過酸化水素	0	0	_	_	0	0	0	×	0	0
	30%アンモニア水	0	0	\triangle	0	0	0	0	×	0	0
_	塩化鉄	0	0	\triangle	0	0	0	_	0	0	0
アル	塩化カルシウム	0	0	0	0	0	0	0		0	0
カリ	硫酸塩	0	0	0	0	0	0	0	\triangle	0	\triangle
	水酸化カルシウム	0	0	0	0	0	0	0	0	0	
	鉱水	0	0	0	0	0	0	0	0		0
	メチルアルコール	0	0	0	0	0	0	0	×	0	
	アセトン	0	O	0	0	×	0	0	O	0	×
溶	ベンゼン	0	0	0	0	×	0	0	0	0	
剤	四塩化炭素	0	0	×	0	×	0	0	0	0	
	エチルエーテル	0	0	0	0	×	0	0	0	0	×
	エチレングリコール	0	0	\triangle	0	0	0	0	0	0	0
	ディーゼルエンジン油	0	0	0	0	_	0	0	0	0	0
油	潤滑油	0	0	0	0	×	0	0	0	0	0
	動物油,植物油	0	0	0	0	0	0	0	0	0	0
類	ケロシン(灯油)	0	0	0	0	0	0	0	0	0	0
	ナフサ	0	0	0	0	×	0	0	0	\triangle	0
	硝酸エステル	0	0	Δ	0	_	0	0	0	0	×
	炭化水素燃料	0	0	0	0	0	0	0	0	0	0
	ふっ素ガス	×	×	\triangle	0	_	X*	×	×	_	\triangle
その	溶融金属ナトリウム	×	×	×	_	_	×	×	_	_	_
他	フロン134a	0	0	0	0	0	0	0	0	0	×
	液体酸素	0	0	0	0	0	0	0	0	_	0
	二酸化炭素	0	0	0	0	0	0	0	0	0	\circ
	二酸化窒素	0	0	\triangle	0	0	0		_	_	0

記号説明 ◎:優 ○:良 △:可 ×:不適 *:高温高圧

4.6 特性値の試験方法

表12 特性値の試験方法

	_	274 17		試験方法	法	
		単位	ふっ素樹脂系	樹脂一般	ゴム	コーティング
比 重			ASTM D792	ASTM D792	JIS K6350	
圧縮クリ-	ープ	%	ASTM D621	ASTM D621	JIS K6301	
硬さ			ASTM D2240	ASTM D785	JIS K6301	
引張強さ		MPa	ASTM D638	ASTM D638	JIS K6301	_
伸び		%	ASTM D638	ASTM D638	JIS K6301	
曲げ強さ		MPa	— ASTM D790			
曲げ弾性	率	MPa		ASTM D790		
吸水率		%	ASTM D570	ASTM D570	JIS K6301	
線膨張係数	数	×10 ⁻⁵ /°C	TMA法	TMA法	TMA法	
鉛筆硬度		鉛筆硬度				JIS K6894
密着性	クロスカット	評点 (1~10)				JIS K6894
ш/д I.	描画	評点(1~5)				JIS K6894

カタログに記載されている材料特性値は、所定の試験条件のもとで得られた代表的な数値です。 異なった条件で使用される場合、そのまま適用できるとは限りません。 特性値は代表値であり、材料の仕様に対する保証値を意味するものではありません。

用途別材料の紹介

5. 1 摺動用シール材料

ベアリー製シールは、気体、液体を問わず優れたシー ル性と耐摩耗性, 低摩擦性を有します。

で使用に合わせて各種タイプを揃えています。

【特長】

- 1. シール面へのフィット性が高くシール性に優れる。
- 2. 摩擦係数が小さく耐摩耗性に優れる。
- 3. 自己潤滑性が高く潤滑油が不要である。
- 4. 耐薬品性に優れ特殊雰囲気で使用できる。

表13 相手材 雰囲気による使い分けと用途

表 13 相手材,雰囲気による使い分けと用途 ○:良好 △:条件により可											×:不適
材料名称	色	許容面圧	特	性	引張強さ		手 材 		字 囲 気	l	加工方法
	MPa	m/min	$^{\circ}$	MPa	鋼	アルミ	ドライ	油	水		
ベアリー FL3000	赤	3	150	260	15	0	×	0	0	Δ	機械加工
ベアリー FL3030	黄	3	150	260	12	0	0	0	0	×	機械加工
ベアリー FL 3075	黒	3	150	260	14	0	0	0	0	Δ	機械加工
ベアリー AS5303	黒	5	150	230	93	0	Δ	×	0	Δ	射出成形
ベアリー PK5301	黒	5	150	260	82	0	Δ	×	0	Δ	射出成形

各材料の代表的特性値は、カタログの27~32ページに掲載しています。

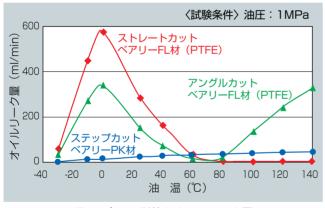


図6 合い口形状とオイルリーク量

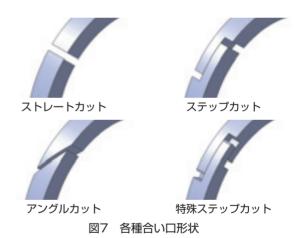


図8 射出成形リング

図9 機械加工リング

5.2 樹脂歯車材料

樹脂歯車は、軽量性、無潤滑性、低騒音性、耐食性、生産性に優れることから種々の分野に使用されています。 ベアリー材料は、スーパーエンプラ材から汎用エンプラ材まで、用途、機能に最もふさわしい材料を揃えており最適歯車を提供いたします。

【特長】

- 1. 高強度,長寿命。
- 2. 摺動性に優れる。
- 3. 耐熱性に優れる。

【代表的な形状】

形 式:平歯車、はすば歯車

モジュール: 0.8~1.5 ピッチ円径: 15~60mm

表14	歯重材料	ᄔᄠᆖ
₹ 14	洲里州科	C ₹ त1 ▽

○:良好	×:不適
------	------

材料名称	色	717574-4	相目	F 材			
10 14 15 10	Ð	引張強さ MPa	曲げ強さ MPa	線膨張係数 ×10 ⁻⁵ ℃	連続使用温度 °C	樹脂	金属
ベアリー PI5030	黒	160	250	1.5	240	×	0
ベアリー AI5003	薄緑	190	220	4	250	0	0
ベアリー AS5040	茶	177	235	1.8	230	×	0

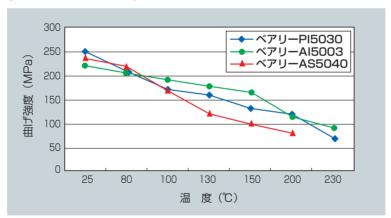


図10 歯車材料の曲げ強度の温度依存性

図11 歯車製品

5.3 食品機械用摺動材料

ベアリー材料は、食品機械用摺動材料としても使用可 能です。

以下に合成樹脂製器具および容器包装規格試験(日本 食品分析センター)に合格した材料を紹介します。

【特 長】

- 1. 摩擦・摩耗特性に優れている。
- 2. 始動時、および極低速時における摩擦係数が極めて低 く、スティックスリップが起こりにくい。
- 3. 軟鋼、ステンレス鋼との相性がよい。
- 4. 酸、塩基、および溶剤によって影響を受けにくい。

表15 代表的な合成樹脂容器包装規格試験合格材料

表15 代表的な合成樹脂	容器包装	〇:良	好 △:	条件によりす	可 ×:不適			
材料名称	色	許容面圧 MPa	特 性 許容すべり速度 m/min	ドライ	加工方法			
ベアリー FL3642	薄黄	3	150	260	0	0	0	機械加工
ベアリー FL3700	黒	3	150	260	0	0	0	機械加工
ベアリー UH3000	白	1	30	80	Δ	Δ	0	機械加工
ベアリー AS5000	薄茶	5	150	230	0	×	0	射出成形
ベアリー AS5704	黒	5	150	230	Δ	0	0	射出成形

注)上記表中の許容面圧および許容すべり速度は、室温時の使用の目安です。 機械的特性値は27~32ページ、摩擦係数・比摩耗量の代表値は33~34ページに掲載しています。

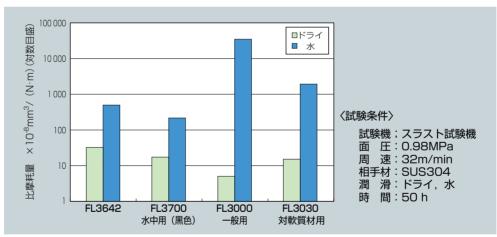


図12 FL3642と弊社各材料との比摩耗量の比較

図13 ベアリーFL3642製品

図14 食品機械用製品

5.4 工作機械専用摺動材料

摩擦係数の低いふっ素樹脂をベースに対摩耗性向上. 耐クリープ性向上、及び熱伝導性向上を図ったベアリー FL3307は、工作機械専用摺動材料で、油潤滑条件のと き、摩擦係数が最も小さい材料です。

【特 長】

他社工作機用摺動材料と比較して

- 1. 圧縮変形が少ない。
- 2. 摩擦・摩耗特性に優れている。
- 3. 耐クーラント液での接着強度に優れる。 (接着剤: NTN精密樹脂専用接着剤 N-3)

表16 ベアリーFL3	3307の一般物性
-------------	-----------

	表 16 パグリーFLS3U/0一版物性 (): 良好										X:个週	
材料名称		色	2 2E24- 1	特	性	,连续使出油电	相	手 材	9	字 囲 気	ī	加工方法
	初杯石柳		引張強さ MPa	伸び %	線膨張係数 ×10 ⁻⁵ /℃	連続使用温度 ℃	鋼	アルミ	ドライ	油	水	ルルエノンバ
	ベアリー FL3307	黒	17	160	10.4	260	0	×	×	0	×	機械加工

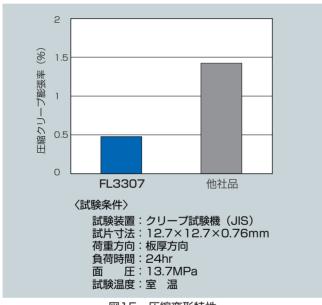
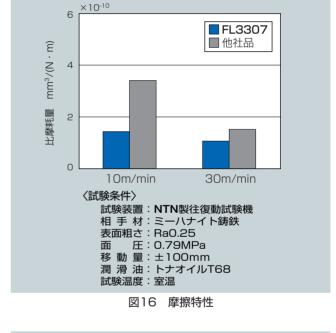



図15 圧縮変形特性

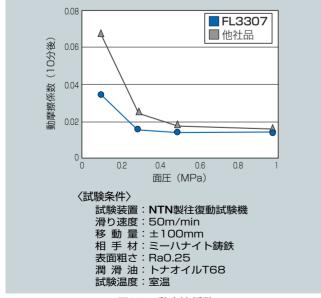


図17 動摩擦係数

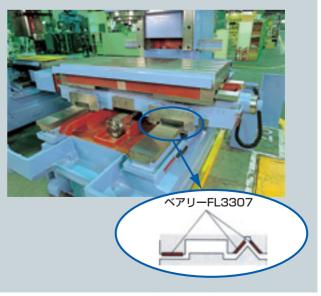


図18 工作機ベッド摺動部

5.5 ふっ素ゴム系すべるゴム ベアリーER3000

ゴムの弾力性とふっ素樹脂の摺動特性を兼ね備えた材 料です。次の優れた特長を有します。

【特 長】

- 1. 弾性体であるのでシール性に優れる。
- 2. 耐薬品性に優れる。
- 3. 耐熱性に優れる。(連続使用温度230℃)
- 4. 摩擦係数が小さく、耐摩耗性に優れる。
- 5. 耐クリープ性に優れる。
- 6. 非粘着性に優れる。
- 7. 食品加工機関連に使用できます。

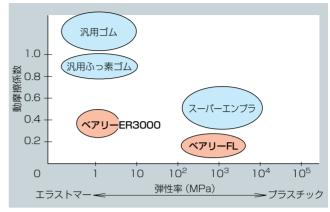


図19 摺動材としてのベアリーER3000の位置

表17 特長と用途

-	長17 特長と用途								○:良好	△:条件により可	
	11 W 67 Th	色		特性				相	手 材	E 9	
材料名称		Đ	硬度 Hs	引張強さ MPa	連続使用温度 ℃	伸 び %	脆化温度 °C	鋼	アルミ	用途	
			70	10	230	290	-20	0	Δ	一般軸受	
	ベアリー ER3000	黒	80	9	230	200	-20	0	Δ	運動用Oリング	
			90	9	230	120	-20	0	Δ	建動用ひりブブ	

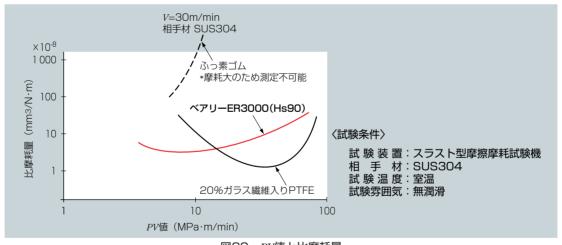


図20 PV値と比摩耗量

図21 すべるゴム製品

5.6 樹脂転がり軸受

樹脂転がり軸受は、内・外輪、ボール、保持器に耐食性・自己潤滑性を有した材料を使用しており、一般の鋼製転がり軸受が使用できない特殊環境(水中・薬液中)で使用可能な軸受です。

【特長】

- 耐水・耐薬品性に優れる。
 (ドライから酸,アルカリ液中まで)
- 2. 錆びによる腐食がない。
- 3. 無潤滑で使用が可能。
- 4. 鋼製転がり軸受より軽量。(重量比 1/4)
- 5. すべり軸受より低トルクで使用可能。

表18 樹脂転がり軸受材料

部品	材 料
内・外輪	ベアリーAS5701(PPS系), PK5031(PEEK系)
ボール	アルミナセラミックス
保持器	ベアリーNY5011(PA系), AS5061(PPS系), FL3700(PTFE系)

表19 使用材料の耐薬品性

○:良好	△:可	×:不適
------	-----	------

材料	内・	外輪			ボール	
1/2 1 /4	AS5701	PK5031	NY5011	AS5061	FL3700	/N /V
塩酸10%	0	0	×	0	0	0
硫酸35%	Δ	×	×	0	0	0
硝酸35%	0	0	×	0	0	0
酢酸10%	0	0	×	0	0	0
水酸化ナトリウム10%	0	0	0	×	0	0
水酸化カリウム10%	0	0	0	Δ	0	0
アンモニア水30%	0	0	X	Δ	0	0

【代表的技術データ】

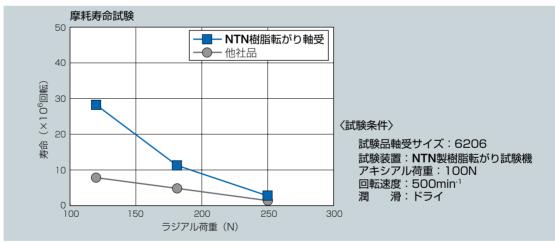


図22 摩耗寿命試験結果

【軸受標準品サイズ】

6000~6006 6200~6206 上記以外の特殊サイズも対応可能

図23 樹脂転がり軸受製品

5.7 樹脂すべりねじ

ベアリーAS5000 (PPS樹脂:ポリフェニレンサルファイド) 製ナットとステンレス (SUS304) 製転造ねじ軸との組合せにより幅広い環境で使用できる低騒音すべりねじです。

表20 樹脂すべりねじ材料と仕様

	材 料
ナット	ベアリーAS5000 (PPS系)
ねじ軸	SUS304(転造)
累積リード誤差	±0.21/300mm Ct10 (JISB 1192)

【特 長】

- 1. 幅広い環境で使用できます。
- 2. ボールねじと比較して低騒音です。
- 3. 低摩擦の樹脂ナットにより高いねじ効率が得られます。

	グリース	耐食性	ねじ精度	ねじ効率	騒音	連続使用温度
NTN樹脂すべりねじ(AS5000)	0	0	0	0	0	
汎用すべりねじ(含油POM)	Δ	Δ~Ο	Δ~Ο	0	Δ	
ボールねじ	×	0	0	Δ	Δ	
(WT) 画程 (MT) (MT) (MT) (MT) (MT) (MT) (MT) (MT)	ねじ 呼び 条 アキ 回転 潤	品すべりね 呼び径: 8r リード: 24 数: 6 シアル荷重 速度: 500	じサイズ:F mm 4mm :100N	 R-MSS082		

図25 樹脂すべりねじ製品

5.8 MLEベアリング

バックメタルの鋼板に青銅粉末を焼結した多孔質焼結 層に、ベアリーFL7023(特殊充填材入り四フッ化エチ レン樹脂)を含浸させた三層構造の鉛フリー軸受です。 内径は3mm~160mmを標準品として取り揃えていま す。

表21 MLEベアリングの特性

許容面圧	49MPa
許容すべり速度	100m/min
許容PV値	98MPa·m
使用温度範囲	-200°C~260°C

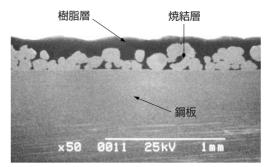


図26 MLEベアリングの断面構造

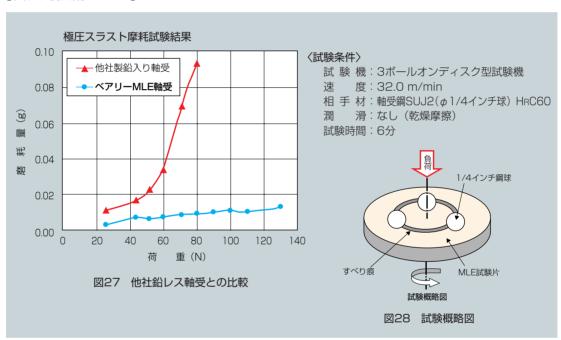


図29 MLEベアリング製品

5.9 水中(薬液中)用摺動材料

空気中(ドライ)で優れた特性を発揮する材料でも液 中で使用すると摩耗が早く、相手材を傷つけるなどの欠 点の生じる場合があります。

これらの欠点を解決した材料を条件に合わせて揃えて います。

【特 長】

- 1. 液中での耐摩耗性が優れている。
- 2. 耐薬品性が優れている。
- 3. 相手材を摩耗させない。

表22 水中(薬液中) 用摺動材料と加工方法

○:艮好 △:条件により可

++ ** 夕 布	色			±0.T-≠:+				
材料名称		許容面圧 MPa	許容すべり速度 m/min	連続使用温度 ℃	ドライ	水中	油中	加工方法
ベアリー FL3700	黒	3	150	260	0	0	0	機械加工
ベアリー AS5704	黒	5	150	230	Δ	0	0	射出加工

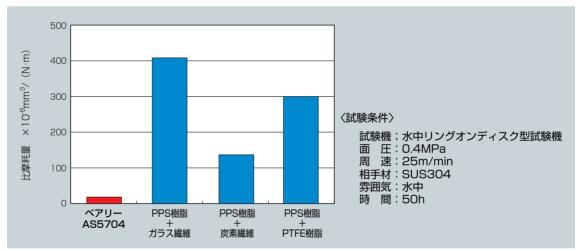


図30 ベアリーAS5704と他PPS樹脂軸受の比摩耗量比較

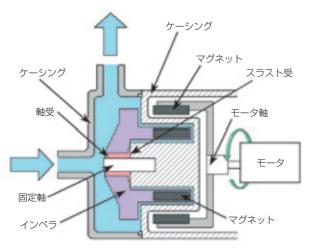


図31 マグネットドライブ式遠心ポンプの構造

図32 水中(薬液中)用製品

5.10 導電性(帯電防止) 摺動材料

優れた摩擦・摩耗特性に加え、導電性も併せ持つ材料 です。帯電防止を要求される箇所の軸受材として用いる ことにより、アース装置を不要とすることも可能です。

また、従来のカーボン系ブラシ材に比べ欠けたり割れ たりすることが少なく摺動音も静かです。

【特 徴】

- ・低摩擦低摩耗性とともに導電性を兼ね備えた樹脂軸受
- ・金属製除電部材に比較して相手材への攻撃がありませ
- ・条件により導電グリスレスが可能です。
- ・カーボン製軸受に比較してクラック等の問題がありま
- ・射出成形可能なベアリーAS材は設計形状について高い 自由度を有します。

表23 体積抵抗率と主な特性

〇:良好 △:条件により可 特 性 相手材 材料名称 色 加工方法 体積抵抗率 許容すべり速度 連続使用温度 許容面圧 アルミ 鋼 $\Omega \cdot cm$ MPa m/min $^{\circ}$ ベアリー FL3900 10 150 黒 3 260 0 0 機械加工 ベアリー UH3954 黒 2.6×107 1 30 80 0 0 機械加工 黒 ベアリー AS5962 1×10^{4} 5 150 150 \bigcirc \wedge 射出成形

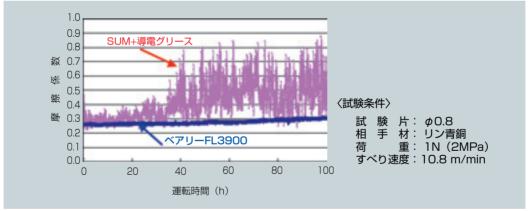


図33 ベアリーFL3900とSUM+導電グリースの摩擦係数(経時変化)の比較

図34 ディスクドライブ用グランドボタン

図35 導電性軸受, 歯車

5.11 コーティング用材料

コーティング用のベアリー材料は、強固な被膜を形成 し、その被膜は薄くて均一であるため、熱膨張が問題と なる箇所や、高精度が要求される箇所に使用されます。 耐摩耗性、非粘着性の特長を活かした用い方ができます。

【特 長】

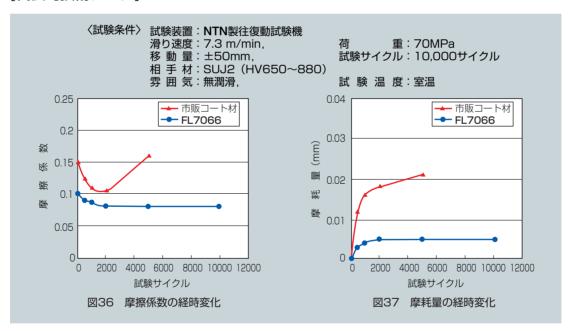
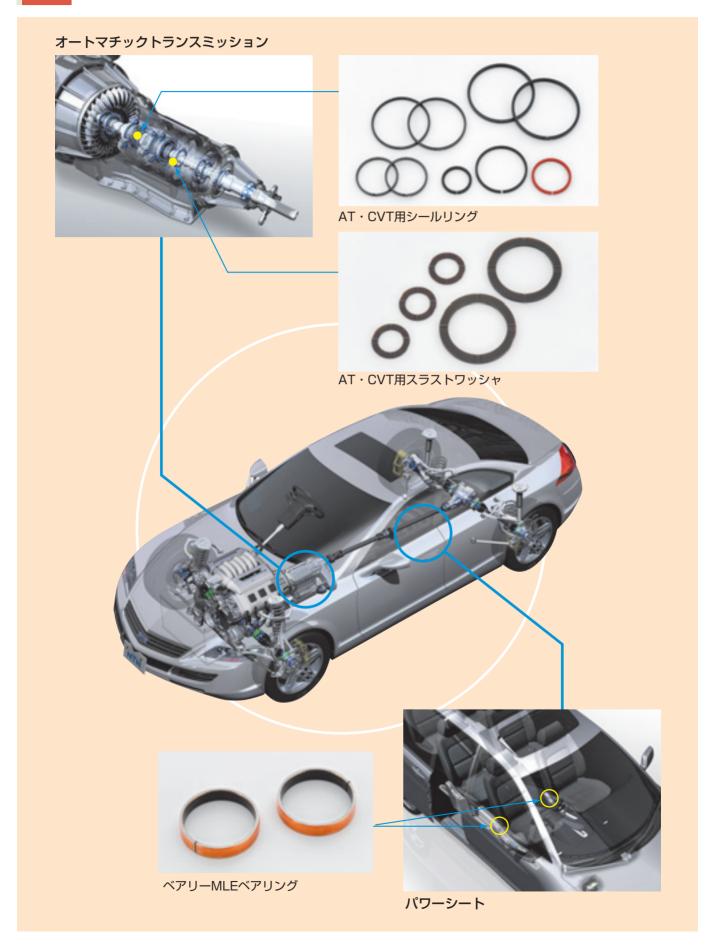
1. 摩擦摩耗特性に優れる。

- 2. 非粘着性に優れる。
- 3. 耐熱性に優れる。
- 4. 耐薬品性に優れる。

表24	コーティング用材料と特長
1X C T	コーノインノ州が付に付収

表24 コーティング用材料と特長 〇: 良好 △: 条件により可										
色	膜厚 ミクロン	特 鉛筆硬度			」連続使用温度 □ ℃	コーティ 鉄系	ィングを施 アルミ	ず下地材	加工方法	
赤	10~30	Н	10	5	220	0	Δ		スプレー	
黒	10~30	ЗН	10	5	220	0	Δ	注1	スプレー	
黒	10~30	ЗН	10	5	220	0	Δ	/ <u></u>	スプレー	
濃緑	10~30	Н	10	4	260	0	×		スプレー	
	色	色 膜厚 ミクロン 赤 10~30 黒 10~30 黒 10~30 濃緑 10~30	色 膜厚 ミクロン 鉛筆硬度 赤 10~30 H 黒 10~30 3H 黒 10~30 3H	色 膜厚 ミクロン 鉛筆硬度 鉛筆硬度 密着性 (JI クロスカット 赤 10~30 H 10 黒 10~30 3H 10 黒 10~30 3H 10 濃緑 10~30 H 10	機関 特性 変着性(JIS規格試験) クロスカット 描画試験 赤 10~30 H 10 5 黒 10~30 3H 10 5 黒 10~30 H 10 5 濃緑 10~30 H 10 4	色 特性 臓厚 ミクロン 鉛筆硬度 クロスカット 密着性 (JIS規格試験) クロスカット 連続使用温度 で 赤 10~30 H 10 5 220 黒 10~30 3H 10 5 220 黒 10~30 3H 10 5 220 濃緑 10~30 H 10 4 260	機厚 特性 変着性 (JIS規格試験) 連続使用温度 クロスカット 描画試験 公 赤 10~30 H 10 5 220 ○ 黒 10~30 3H 10 5 220 ○ 黒 10~30 3H 10 5 220 ○ 濃緑 10~30 H 10 4 260 ○	機厚	検性 コーティングを施す下地材 機厚 ミクロン 鉛筆硬度 タロスカット 描画試験 クロスカット 描画試験 クロスカット 描画試験 で	

注1) コーティングを施す下地材に樹脂を検討される場合、コーティングの焼成温度以上の耐熱性を有する材料を使用する必要があります。 別途ご相談ください。

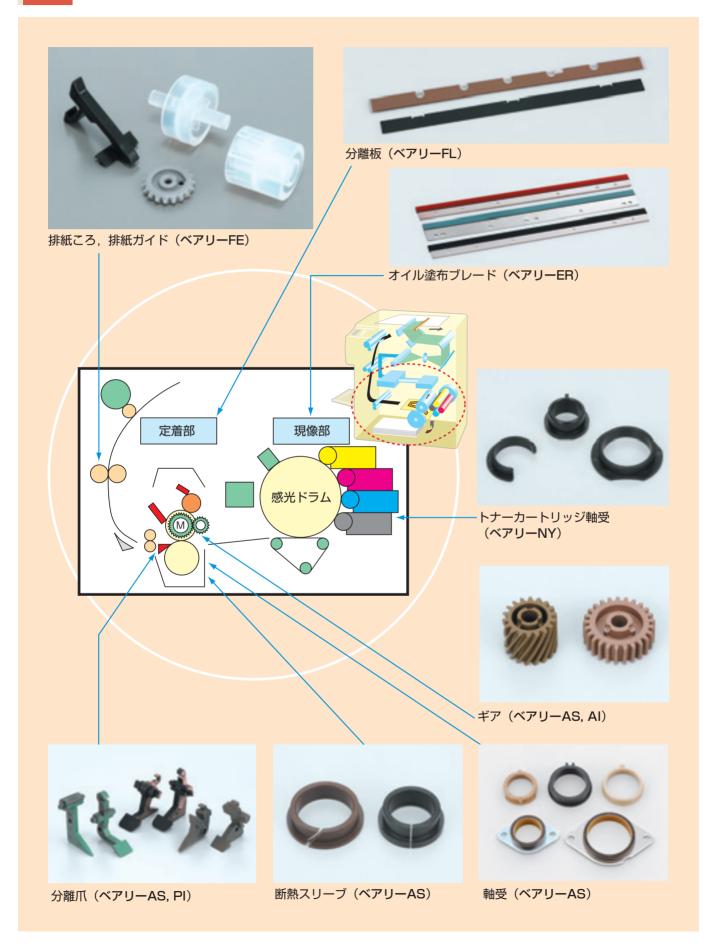
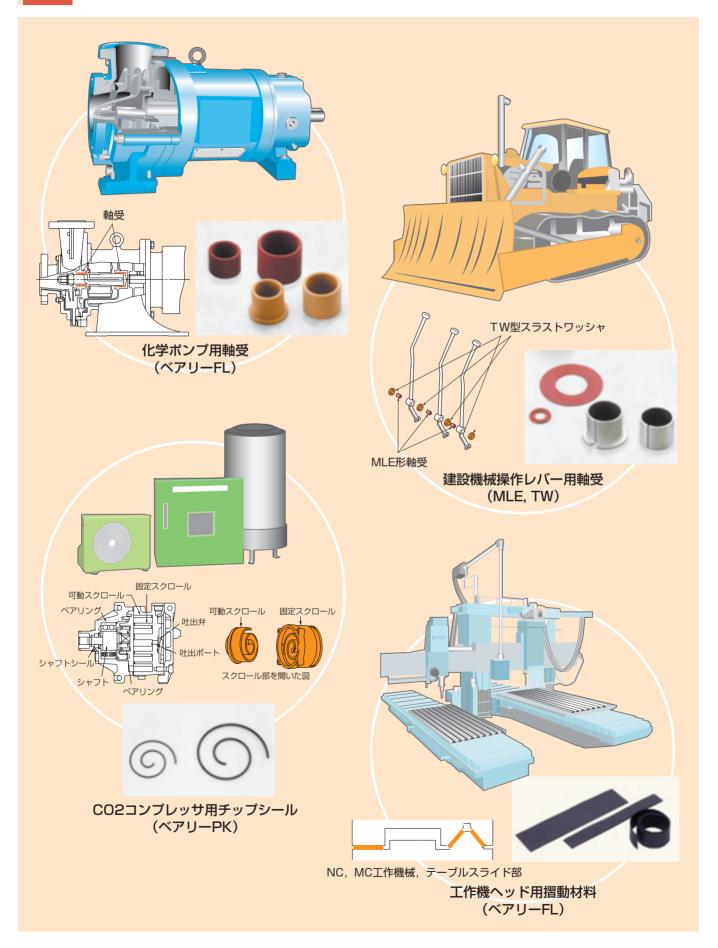


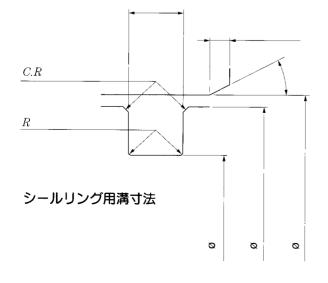
図38 コーティング製品

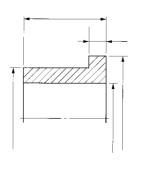

6.1 自動車分野

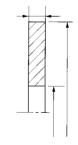
6. 2 複写機・LBP分野

6.3 産業機械分野

お名前


TEL.


FAX.


連絡先

東京 TEL.03(5487)2924 FAX.03(5487)2941 名古屋 TEL.052(261)1244 FAX.052(261)2697 大阪 TEL.06(6449)6719 FAX.06(6448)7296

精密樹脂製品使用条件確認票 項目 容 確 認 内 1. 使用機械 2. 使用箇所 3. 周囲温度 最高,最低 C 4. 周囲湿度 5. 周囲環境 大気, 水中, 海水中 6. 荷重の種類 静・動・衝撃・振動・繰り返し・その他() 7. 荷重の動き 回転・揺動・往復・その他(h/⊟ 8. 作動時間 cycle/min 9. 回転数 rpm 10. 速度 m/min 11. 荷重 ラジアル N {kgf}, アキシアル N {kgf} 12. 圧力(シールリング) MPa {kgf/cm²} 13. 潤滑 寸法: 材料: 14. 軸 硬さ: 粗さ: 寸法: 材料: 15. ハウジング 硬さ: 粗さ: 16. その他

ブッシュ

スラストワッシャ